STRUCTURE ELUCIDATION OF ALKALOIDS FROM LEAVES OF Voacanga foetida (Bl.) Rolfe OF LOMBOK ISLAND

Surya Hadi1, Dina Asnawati1, and Novi Febriant2
1Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit 62 Mataram-NTB 83125
2Study Program of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Jl. Majapahit 62 Mataram-NTB 83125

Received January 13, 2010; Accepted April 5, 2010

ABSTRACT

The leaves of Voacanga foetida (Bl.) Rolfe, have been used ethnomedically for the treatment of wounds, itches, and swellings particularly in Lombok island. A phytochemical study has been done to investigate chemical compounds responsible against the cause of the diseases. By separating alkaloidal fraction from the leaves was found voacristine 1 as the major alkaloidal compound, and voacangine 2 and coronaridine 3 as the minor components. The structure elucidation of the compounds was carried out on the basis of spectroscopy data. A structure revision of voacristine 1 was also reported.

Keywords: alkaloids, Voacanga foetida, Lombok

INTRODUCTION

The plant Voacanga foetida (Bl.) Rolfe (Apocynaceae), locally in Lombok Island known as "kumbi", is distributed throughout Indonesia. It grows in areas about 400 m above sea level and reaches 10-15 m in height. In Lombok, an aqueous extract of the leaves or bark is used commonly to treat a wide range of skin conditions such as wounds, itches, and swellings. The leaves of V. foetida (Bl.) Rolfe, are also warmed over a fire and then placed on chronic leg sores; this is a common practice in many parts of Indonesia In Sumatra, the plant's latex has been used externally to treat skin disorders [1].

An initial alkaloid screening showed that all parts of the plant contained high concentrations of alkaloids [2], although a previous report [3] indicated that only small amounts of alkaloids occurred in the bark, fruit rind, and seeds. Moreover, a thorough survey of the relevant literature indicated that no further information concerning structural properties of the alkaloids contained in this plant had been published. Other Voacanga species had been shown to yield a variety of indole alkaloids [4].

EXPERIMENTAL SECTION

Materials

The leaves of Voacanga foetida (Bl.) Rolfe were collected from Namada, West Lombok with permission of the local government and in collaboration with the University of Mataram, Lombok, Indonesia. The collection and botanical identification were carried out by botanists from the University of Mataram and the Research and Development Centre for Biology, Bogor, Indonesia. A voucher specimen was deposited at the Laboratory of Biology, the University of Mataram.

Instrumentation

NMR spectra of 1H, gCOSY, gHSQC, and gHMBC were recorded on a Varian Inova-500 MHz NMR spectrometer, unless otherwise stated. 13C-NMR and DEPT spectra were collected on a Varian Unity 300 spectrometer running at 75.42 MHz. CI (reactant gas: isobutane) and EI (at 70 eV) mass spectra were obtained on a Shimadzu QP-5000 by the direct insertion technique. HR/MS were run on a Fisonic/VG Autospec-ova-TOF Mass Spectrometer; relative intensities of peaks are given in brackets after the m/z values. The UV absorption spectra (solvent corrected) were recorded on a Shimadzu UV-265 spectrophotometer. IR spectra were recorded on a Perkin Elmer 783 Infrared Spectrophotometer using a KBr disc. Preparative TLC was performed on plates made from Merck silica gel 60 PF-254, 0.3 mm thick and bands were observed under UV light (λ 360 nm). Solvent ratios are v/v. All solvents were re-distilled before use. Melting points were measured on a Reichert hot stage melting point apparatus and are uncorrected. The optical rotations were measured of solutions with a Jasco DIP-370 Digital Polarimeter.

* Corresponding author. Tel/Fax: +62-370-634110
Email address: sur_hadi68@yahoo.com

Surya Hadi et al.
Procedure

Isolation and Purification

Finely-powdered, air-dried leaves (2.0 kg) of V. foetida (Bl.) Rolfe extracted with cold MeOH (3 x 4 l) with occasional swirling produced a dark green extract (250.5 g). Further steps used to isolate alkaloids from this extract followed the procedure acid-base extraction and produced a dark-green, crude alkaloid extract (692.8 mg). Two known alkaloids, voacristine (18.3 mg, major) and voacangine (2.1 mg, minor), and coronaridine (4.2 mg, minor) were isolated from the crude extract by repeated PTLC on silica gel (DCM:MeOH:conc. NH₄OH(aq) / 90:9:1).

Voacristine 1: brown solid; m.p 168-169 °C (m.p. 167-169 °C; [5]); UV λMAX (nm, CHCl₃): 278 (logεMAX = 3.885), 298 (logεMAX = 3.821); ¹H-NMR (CDCl₃, 500 MHz), 1.28 (d, 1H, J = 6.0 Hz, H-18), 1.40 (m, 1H, H-20), 1.70 (m, 1H, H-15), 1.84 (m, 1H, H-15), 1.96 (m, 1H, H-17), 2.03 (bs, 1H, H-14), 2.55 (bd, 1H, J = 13.5 Hz, H-17), 2.82 (bd, 1H, J = 8.5 Hz, H-3), 3.02 (m, 1H, H-3), 3.06 (m, 1H, H-6), 3.12 (m, 1H, H-6), 3.15 (m, 1H, H-6), 3.43 (m, 1H, H-5), 3.73 (s, 3H, OCH₃), 3.83 (s, 3H, COOCH₃), 3.91 (m, 1H, H-19), 4.08 (bs, 1H, H-21), 6.78 (m, 1H, H-9), 6.78 (m, 1H, H-11), 7.32 (m, 1H, H-10), 7.73 (bs, 1H, NH); gHSQC (CDCl₃, 500 MHz), 3.02 & 2.62/50.8(C-3), 3.43 & 3.15/52.1(C-5), 3.12 & 3.06/21.7(C-6), 6.78/109.5(C-9), 7.32/119.3(C-10), 6.78/109.5(C-11), 2.03/28.8(C-14), 1.84 & 1.70/24.1(C-15), 2.55 & 1.96/36.8(C-17), 1.28/22.39(C-18), 3.91/70.8(C-19), 1.40/24.2(C-20), 4.08/54.5(C-21), 3.73/56.0(OMe), 3.83/52.4(COOMe), LRCIMS, m/z 385 (MH⁺); LREIMS, m/z (relative intensity, %) 384 (46), 369 (20), 367 (20), 366 (60), 339 (10), 323 (7), 297 (9), 297 (10), 279 (10), 265 (9), 245 (10), 244 (34), 225 (16), 224 (20), 212 (20), 198 (10), 184 (46), 160 (46), 152 (57), 140 (41); HRCIMS, C₁₇H₁₂N₂O₄ (measured 368.2162, calc. 369.2178, for MH⁺).

Voacangine 2: yellow solid; m.p 135-136 °C (m.p. 136-137 °C; [6]); UV λMAX (nm, CHCl₃): 272 (logεMAX = 3.789), 266 (logεMAX = 3.835) 293 (logεMAX = 3.767); LRCIMS, 369 (MH⁺); LREIMS, m/z (relative intensity, %) 366 (48), 253 (11), 338 (20), 323 (8), 309 (7), 283 (9), 245 (9), 244 (15), 225 (7), 208 (20), 195 (12), 184 (33), 167 (20), 180 (31), 154 (41), 136 (100); HRCIMS, C₁₇H₁₂N₂O₃ (measured 368.2162, calc. 369.2178, for MH⁺).

Coronaridine 3: yellow amorphous solid; m.p 236-238 °C (m.p. 237-239°C; [7]); UV λMAX (nm, CHCl₃): 283 (logεMAX = 3.616), 310 (logεMAX = 3.799); ¹H-NMR (CDCl₃, 500 MHz), 0.90 (t, 1H, H18), 1.13 (m, 1H, H-20), 1.32 (m, 1H, H-19), 1.44 (m, 1H, H-19), 1.59 (m, 1H, H-15), 1.88 (bs, 1H, H-15), 1.91 (bs, 1H, H-14), 2.09 (m, 1H, H-17), 2.58 (bd, 1H, 13 Hz, H-17), 2.81 (bd, 1H, J = 8.0 Hz, H-3), 2.93 (m, 1H, H-3), 3.02 (m, 1H, H-6), 3.15-3.23 (m, 1H, H-5), 3.15-3.23 (m, 1H, H-6), 3.38 (m, 1H, H-5), 3.56 (bs, 1H, H-11), 3.71 (s, 3H, COOMe), 7.08 (t, 1H, H-11), 7.14 (t, 1H, H-10), 7.24 (d, J = 8.0, 1H, H-9), 7.48 (d, 1H, J = 8.0 Hz, H-12), 7.75 (bs, 1H, NH); LRCIMS, m/z 339 (MH⁺); LREIMS, m/z (relative intensity, %) 338 (34), 323 (7), 279 (7), 253 (6), 214 (17), 208 (11), 195 (7), 194 (7), 180 (13), 169 (40), 168 (24), 166 (34), 154 (34), 149 (36), 136 (51); HRCIMS, C₁₇H₁₂N₂O₃ (measured 339.2069, calc. 339.2073, for MH⁺).

RESULT AND DISCUSSION

The following section discusses the structural elucidation of the above isolated compounds.

Voacristine

A brown solid was also isolated from the alkaloid mixture, which was found to be the alkaloid, voacristine 1. This compound absorbed UV light with maxima at 278 and 298 nm, characteristic of the presence of a ring A-substituted indole nucleus. The LRCIMS for voacristine showed a major peak at 385 (MH⁺) while EIIMS produced peaks at m/z 384, 366, 339, 244, and 184. Initial identification of this compound was based on its ion fragmentation pattern, which was characteristic of iboga type alkaloids. HRCIMS indicated the formula C₁₇H₁₂N₂O₄ (found 385.2104, calc. 385.2127, for MH⁺), supportive of voacristine 1. The structural assignment of 1 was then established from ¹H-NMR, gCOSY, HSQC, HMBC experiments and by comparison of the spectra of 1 with the spectra of (19T)-voacristine [8]. To this author's knowledge, however, this is the first report to elucidate the structure of voacristine on the basis of 2D-NMR experiments.

As a starting point for the structural confirmation of voacristine, focus was placed on the aromatic region. The signal corresponding to the NH proton, existed as a broad singlet at 87.73 ppm. Also in this region of the spectrum, other signals were evident which were typical of a substituted indole moiety. Closer inspection of the aromatic signals permitted the assignment of H-10 as a multiplet at 87.32 ppm integrating for one proton, and another multiplet centralised at 86.78 ppm integrating for two protons, and ascribed as H-9 and H-11 respectively. The gCOSY confirmed the connectivity between the two signals, while the gHSQC spectrum provided a straightforward identification of the attached carbons resonating at 87.32 ppm (H-10)/ δ119.3 ppm (C-10); 86.78 ppm (H-9) and (H-11)/ δ109.5 ppm (C-10 and C-12). The methoxy group was found to be attached at the C-12 position instead of C-10 as reported in the...
Table 1. Assignment of 1H and 13C-NMR data of voacristine 1 by gCOSY, gHSQC and gHMBC

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (ppm), multiplicity, Reference (3H (ppm), multiplicity, 1C (ppm)</th>
<th>J (Hz)</th>
<th>J (Hz)</th>
<th>[8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.02 m</td>
<td>3.02 ddd, 2.4, 3.6, 9.2</td>
<td>50.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.43 m</td>
<td>3.40 m</td>
<td>52.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.12 m</td>
<td>3.25-3.0 m</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>123.0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>136.2</td>
</tr>
<tr>
<td>9</td>
<td>6.78 m</td>
<td>6.92 d, 2.5</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.32 m</td>
<td>-</td>
<td>119.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6.78 m</td>
<td>6.48 dd, 2.5, 8.8</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>*)</td>
<td></td>
<td>156.9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td></td>
<td>140.6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.03 bs</td>
<td>2.03 bs</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.84 m</td>
<td>1.81-1.73 m</td>
<td>28.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.55 bd, 13.5</td>
<td>2.58 bd, 13.5</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.96 m</td>
<td>1.97, ddd, 13.5, 4.0, 2.4</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.28 d, 6.0</td>
<td>1.28 d, 6.8</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.91 m</td>
<td>3.89 dq 2.4, 6.6</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.40 m</td>
<td>1.42 dddd, 10.2, 8.1, 2.4, 0.5</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>7.73 bs</td>
<td>*)</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>OMe</td>
<td>3.73 s</td>
<td>*)</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td>COOMe</td>
<td>3.83 s</td>
<td>*)</td>
<td>175.0</td>
<td></td>
</tr>
</tbody>
</table>

*) Not mentioned in the reference [8]

Another aid in the confirmation of the structure was the doublet corresponding to a methyl group resonating at δ1.28 ppm (3H, H-18) coupled to a carbon signal at δ22.4 ppm (C-18). The signal of H-18 showed a cross peak to a multiplet at δ3.91 ppm (1H, H-19) having a correlation to a carbon signal at δ70.8 ppm (C-19). This proton appeared at a relatively low field suggesting its attachment to a carbon with a hydroxy substituent. The C-19 proton also showed a cross peak to a multiplet at δ1.40 ppm (1H, H-20) connected to δ24.2 ppm (C-20). This pattern indicated the presence of a (CH$_2$-CH(OH)-CH$_2$) fragment in voacristine. The C-20 proton gave rise to a COSY cross peak indicating a coupling to a multiplet at δ4.08 ppm (H-21) correlated to δ54.5 ppm (C-21) and also to

Surya Hadi et al.
methylene protons at 81.84 and 1.70 ppm (H-15, H-15'), which had a correlation to 824.1 ppm (C-15).

The proton signals at 83.02 ppm, which shared a cross peak with a signal at 82.82 ppm, were assigned as H-3, 3' and were connected to a carbon resonating at 850.8 ppm (C-3), while a peak at 83.02 ppm (H-3) showed a correlation with a proton signal at 82.03 ppm (H-14) and also to a carbon signal at 824.1 ppm (C-14). The C-14 proton gave a cross peak to 81.96 ppm (H-17) coupled to a proton signal at 82.55 ppm (H-17), while the gHSQC spectrum showed both signals had cross peaks indicating that they were coupled to a carbon signal at 836.8 ppm (C-17).

The protons attached to the C-5 carbon, adjacent to N_b, appeared as two multiplets centred around 83.43 (H-5) and 83.15 (H-5') and were coupled to the 13C signal at 852.1 ppm. The two protons (H-5) were observed to have a connection to 83.12 ppm (H-6), which showed a further cross peak indicating a coupling to the proton signal at 83.06 ppm (H-6). The gHSQC spectrum showed H-6 was connected to a carbon signal at 821.7 ppm.

The positions of the quaternary carbons were determined by a gHMBC long range carbon coupling experiment. In the aromatic region, the gHMBC spectrum showed the proton signal at 87.32 ppm (H-10) coupled to carbon signals at 8156.90 ppm (C-9), 8140.6 ppm (weak, C-13), 8136.2 ppm (C-8), and 8109.5 ppm (C-9a and C-11). The presence of a quaternary signal at 8156.9 ppm suggested methoxy substitution at this carbon in the aromatic ring [10]. The proton signal at 88.78 ppm correlated to 8156.9, 8136.4, 8123.0, and 8109.5 ppm. From here it can be suggested that quaternary carbons at C-7 and C-8 gave rise to signals at 8123.0 and 8136.4 ppm, respectively. The signal attributable to the protons associated with the methyl ester moiety was observed as a singlet at 83.83 ppm, which correlated to the peak at 8175.0 ppm (C=O). The NMR spectroscopic data for the compound are summarized in Table 1.

Voaacrine obtained from V. africana, was first reported by Renner and Thoma in 1957 [5]. Tremorogenic activity has been observed in several iboga alkaloids. It was studied that the change in activity against change in functional groups for various intracerebrally injected tremorogenic indole alkaloids including voacgrine and found that the tremorogenic potency was increased by the presence of a methoxy group and decreased by a hydroxyl or carbomethoxy group [12].

Voaacrine

Voaacrine 2, a minor component in the aerial parts (bark and leaves) of the plant V. foetida, was isolated as a yellow solid. It absorbed UV light with maxima at 272, 286, and 293 nm, characteristic of a substituted indole moiety [6]. The identification of this compound was based on ion fragmentations by LREIMS, which showed most of the simple ion fragments observed for voacgrine [6]. Several important fragment ions of voacrine 2 are depicted in structures a-e of Fig 1. From the 1H-NMR spectrum, the pattern of peaks in the aromatic region was identical to that reported for voacgrine suggesting the presence of a 2,3,5-substituted indole nucleus. The other peaks are not presented due to the weakness of the 1H-NMR spectrum observed as a result of the small amount of material available as well as the presence of a significant amount of impurities. The molecular formula of 3 was than confirmed by HRCIMS.

Voaacrine has been reported to exhibit antitubercular activity [13]. It was also shown to have significant analgesic and hypothermic effects in mice at oral doses of 25 mg/kg [14]. According to Bert
Coronaridine 3 was isolated as a yellow amorphous solid absorbing UV at λ max 283 and 310 nm consistent with an indole chromophore. Initial identification of the sample was achieved using the ion fragmentation patterns observed in the LREIMS spectrum, which showed the sample’s ion fragmentation pattern was identical to that of coronaridine. The molecular formula of coronaridine was obtained by HRCIMS and found to be C_{21}H_{24}N_{2}O_{2} (measured 339.2069, calc. 339.2073, for MH^+). Further structure elucidation was carried out by utilizing ^1H-NMR and gCOSY experiments and by comparing the compound’s spectrum with that of an authenticated sample of a known [8] analogous compound, namely 18-hydroxy coronaridine 4, as shown in Table 2.

From the ^1H NMR spectrum, the compound clearly had an indole moiety, with a characteristic signal for an N-H and a 1,2,3,4-aromatic proton pattern. The signal for the N-H appeared as a broad singlet at 8.75 ppm while the aromatic signals appeared as a doublet at 8.48 ppm (H-12) which correlated to a triplet at 8.08 ppm (H-11); the triplet ascribed to H-11 also coupled to another triplet at 8.14 ppm (H-10) as shown by the gCOSY spectrum. Another doublet at 8.24 ppm (H-9) correlated to the triplet at 8.14 ppm (H-10). The presence of an ethyl group in 3 was
deduced from the appearance of a triplet at 80.90 ppm (H-18), with an integral appropriate for three protons, coupled to two multiplets resonating at 81.44 and 81.32 ppm respectively (H-19, H-19'). Furthermore, a cross peak confirmed coupling between the C-19 protons and a multiplet at 81.13 ppm (H-20), correlating in turn with a multiplet at 83.56 ppm (H-21) and two multiplets at 81.88 and 81.59 ppm assigned as C-15 protons. The C-3 protons appeared as a multiplet at 82.93 ppm and a broadened doublet at 82.81 ppm (J = 8.0 Hz), from which both signals correlated to a broad singlet at 81.91 ppm (H-14). The proton at C-14 gave a correlation to a broadened singlet at 81.88 ppm (H-15). A proton signal ascribed to a proton at C-5 appeared to overlap with a C-6 proton giving a multiplet signal at 83.15-3.23 ppm. Other proton signals of C-5H and C-6H appeared at 83.38 and 83.02 ppm, respectively.

Coronaridine 3, an iboga alkaloid isolated from Ervatamia species, was first reported by Gorman et al. [7]. Iboga alkaloids arise biogenetically from tryptophan or its equivalent and two head-to-tail mevalonate residues [16]. Coronaridine was reported to have potent antilishaimal activity, inhibiting promastigote and amastigote growth [17]. Some iboga alkaloids including coronaridine have been found showing anti-addictive properties [18]. It has also been reported that coronaridine, like voacangine, produced analgesic and hypoemetic effects in mice [18]. However, coronaridine was also found to display cytotoxic activity.

ACKNOWLEDGEMENT

I would like to give my sincere thanks to my supervisor, Prof. John B. Bremner, University of Wollongong for supporting spectroscopic data. Thanks are extended to University of Mataram and AusAid for funding this study.

REFERENCES