Ontologi Sistem Penilaian E-Learning Berbasis Kompetensi

Desi Windisari¹, Sri Suning Kusumawardani², P. Insap Santosa³

¹,²,³ Jurusan Teknik Elektro dan Teknologi Informasi FT, Universitas Gadjah Mada
Jl. Graha No 2, Yogyakarta 55281

Abstract

Automation grading on e-Learning assessment helps educators in assessing the results of the exam. In a previous research, automation grading value just in the form of numbers, not performed a review the achievement of competency standards. In this research we developed assessment system ontology design for e-learning base competence. This propose ontology design models the relation between matter and competence then made the rule for the calculation of achievement students against each competency and make recommendations to the student passing the exam. From the test results with the Protege show that ontology design can grade the assessment and give recommendations to the student passing the exam, in accordance with the rules made.

Keywords: Ontology, Assessment e-Learning, Automation grading

1. Pendahuluan

Cara paling sederhana dalam menilai hasil belajar dari peserta didik adalah secara tradisional atau manual. Cara ini cukup menyita waktu pendidik sehingga mengurangi produktivitas pendidik dalam melakukan penelitian dan bidang-bidang lain yang dapat mendukung proses pembelajaran.

Untuk mempermudah pendidik dalam melakukan penilaian hasil belajar diperlukan suatu sistem otomatisasi penilaian.

Makaah ini menjelaskan perancangan ontologi sistem penilaian e-Learning berbasis kompetensi. Ontologi yang dirancang ditujukan untuk mengukur pencapaian mahasiswa terhadap masing-masing kompetensi yang diijinkan dalam sebuah ujian, menghitung total pencapaian kompetensi serta total nilainya dan memberi rekomendasi kelulusan mahasiswa terhadap ujian tersebut.

Keterbatasan otomatisasi penilaian dengan rancangan ontologi dan rule yang dibuat dalam penelitian ini adalah baru bisa diimplementasikan kedalam ujian yang berbentuk pilihan ganda, untuk itu diharapkan pada penelitian selanjutnya bisa diikambangkan untuk ujian yang berbentuk essay, sehingga sistem yang dibuat lebih fleksibel.
2. Fundamental

Penilaian (assessment) dan kompetensi

Kompetensinya merupakan pengetahuan, keterampilan, dan nilai-nilai yang direfleksikan dalam kebiasaan berfikir dan bertindak (Siskandar, 2003). Kompetensinya adalah seperangkat tindakan cerdas, penuh tanggung jawab yang dimiliki sesuatu sebagai syarat untuk dianggap mampu oleh masyarakat dalam melaksanakan tugas-tugas di bidang pekerjaan tertentu (SK Mendinas, 2002).

Dari definisi di atas kompetensi dapat digambarkan sebagai kemampuan untuk melaksanakan satu tugas, peran, kemampuan mengintegrasikan pengetahuan, keterampilan-keterampilan, sikap-sikap dan nilai-nilai pribadi, dan kemampuan untuk membangun pengetahuan dan keterampilan yang didasarkan pada pengalaman dan pembelajaran yang dilakukan.

Ontologi

Ontologi merupakan suatu teori tentang metode pemberian makna dari suatu objek, properti suatu objek, serta relasi objek tersebut yang terjadi suatu domain pengetahuan. Ontologi dapat digunakan untuk menerangkan struktur suatu domain pengetahuan tertentu (Wiryna & Hasibuan, 2002).

1. Berbagi pemahaman unum tentang struktur informasi pada orang-orang atau software agent adalah salah satu tujuan yang lebih umum dalam mengembangkan ontologi.

2. Menggunakan kembali domain pengetahuan adalah salah satu kekuatan dibelakang gelombang baru dalam penelitian Ontologi.

3. Membuat asumsi domain eksplisit yang mendasari sebuah implementasi memungkinkan untuk mengubah asumsi dengan lebih mudah jika pengetahuan kita tentang domain berubah.

4. Memisahkan domain pengetahuan dari operasional pengetahuan merupakan penggunaan umum Ontologi.

5. Menganalisis domain pengetahuan adalah mungkin apabila spesifikasi deklaratif dari persyaratan tersedia.

Menurut Noy dan McGuinness (2001) suatu Ontologi disusun atas beberapa komponen penting yaitu individuals (instances), classes (concepts), attributes, dan relationships. Ontologi dapat
dibuat dengan mudah dengan menggunakan tool pembangun Ontologi.

Protégé

Protégé merupakan sebuah perangkat lunak pengolah pengetahuan berbasis ontologi. Tool dapat digunakan oleh seorang ahli pengetahuan dengan tujuan untuk merancang dan membangun ontologi, memodelkan tampilan pengetahuan akuisisi, dan memasukkan domain pengetahuan.

Protégé mampu memvisualisasikan hubungan subkelas dalam tree, mendukung berbagai penurunan (multiple inheritance) dan root pada hierarki class yang terbentuk adalah class "THING".

Jadi perangkat lunak Protégé dapat menyediakan proses dari konsepsi dasar pengetahuan secara terintegrasi, serta dapat mengubah tampilan visual lingkungan dengan memperluas arsitektur sistem untuk membuat pemodelan dasar pengetahuan secara lebih sederhana dan mudah.

3. Metodologi Penelitian

Penelitian diawali dengan studi literatur yang terangkum dalam tahap analisis masalah, kemudian dilintasi dengan perancangan sistem yang diawali dengan memilih kompetensi yang dijadikan dasar dalam pembuatan desain ontologi, kemudian dari kompetensi yang telah dipilih dibuat soal-soal yang mewakili masing-masing kompetensi setelah itu dibuatlah rancangan ontologi, aturan dan query-nya. Tahap akhir dari penelitian ini adalah pengujian sistem untuk melihat apakah rancangan yang dibuat sudah sesuai dengan tujuan penelitian atau belum. Langkah-langkah penelitian terlihat pada Gambar 1

![Gambar 1. Langkah Penelitian](image)

4. Hasil dan Pembahasan

Kompetensi

<table>
<thead>
<tr>
<th>NO</th>
<th>KOMPETENSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mengerti dan memahami konsep dan prinsip Keteknikan (engineering) secara umum</td>
</tr>
<tr>
<td>2</td>
<td>Mengerti dan memahami konsep teori, dan metode dalam bidang Teknologi Informasi dalam kaitannya sebagai alat bantu dalam pemecahan masalah</td>
</tr>
<tr>
<td>3</td>
<td>Mampu mengidentifikasi dan merumuskan masalah bidang Teknologi Informasi dan menentukan alternatif penyelesaiannya</td>
</tr>
<tr>
<td>4</td>
<td>Mampu menganalisis dan menginterpretasikan data serta informasi</td>
</tr>
<tr>
<td>5</td>
<td>Mampu merancang sistem berbasis komputer untuk menyelesaikan suatu permasalahan</td>
</tr>
<tr>
<td>6</td>
<td>Mampu melakukan pengelolaan data dan informasi secara efektif</td>
</tr>
<tr>
<td>7</td>
<td>Menguasai metodologi, teknik dan tools untuk rancang bangun sistem perangkat lunak</td>
</tr>
<tr>
<td>8</td>
<td>Mampu menerapkan sistem berbasis komputer dan telekomunikasi sebagai bagian dalam penyelesaian suatu masalah</td>
</tr>
<tr>
<td>9</td>
<td>Mampu melakukan pengembangan sistem informasi dengan memperhatikan aspek-aspek yang terkait</td>
</tr>
<tr>
<td>10</td>
<td>Mampu mengoperasikan piranti berbasis komputer dan perangkat lunak secara efektif dan aman</td>
</tr>
<tr>
<td>11</td>
<td>Mengerti isu-isu kontemporer dalam bidang Teknologi Informasi</td>
</tr>
<tr>
<td>12</td>
<td>Mampu memanfaatkan Teknologi Informasi dan Komunikasi secara efektif</td>
</tr>
</tbody>
</table>
Soal

Soal yang dibuat pada penelitian ini adalah soal-soal yang mewakili masing-masing kompetensi, karena objek penelitian adalah ujian komprehensif di Program Studi Teknologi Informasi JTETI FT UGM maka berdasarkan ketentuan dari JTETI FT UGM soalnya ada 50 soal. Oleh karena kompetensi yang harus diwakili adalah 12 kompetensi dan dibagi merata keseluruh soal sehingga masing-masing kompetensi diwakili oleh 4 soal, kelebihan 2 soal diberikan untuk kompetensi 5 dan 6 sehingga kompetensi 5 dan 6 diwakili oleh 5 soal.

Karena hasil dari penelitian ini berupa rancangan maka soal yang dibuat diwakili dengan suatu simbol sebagai bahan pembuatan metologi. Soal yang sebenarnya akan dipakai pada tahap implementasi rancangan metologi pada LMS Moodle yang akan digunakan pada penelitian selanjutnya.

Rancangan ontologi

Gambar 2 menunjukkan Ontologi hubungan antara kelas Mahasiswa dengan propertinya yang ditandai dengan anak panah. Anak panah dengan garis tidak putus-putus menandakan asserted property (property yang didefinisikan). Sedangkan anak panah dengan garis putus-putus menandakan inverted property (property hasil perhitungan inferensi).

Rancangan aturan (Rule)

Ada beberapa macam aturan yang dibuat dalam penelitian ini, antara lain:

1. Aturan untuk menghitung pencapaian masing-masing kompetensi (12 aturan mewakili 12 kompetensi)
2. Aturan untuk menghitung total pencapaian kompetensi
3. Aturan untuk menentukan nilai dalam huruf
4. Aturan untuk menentukan rekomendasi kelulusan

1) Aturan Perhitungan Pencapaian Masing-masing Kompetensi

\[
P_{K1} = \frac{S_{30} + S_{32} + S_{45} + S_{50}}{4}
\]

Aturannya adalah sebagai berikut

Rule 1 (kompetensi 1)

\(mohasiswa(?m) \land hasNK1_s30(?m, ?s30) \land hasNK1_s32(?m, ?s32) \land hasNK1_s45(?m, ?s45) \land hasNK1_s50(?m, ?s50) \land hasJK1(?m, ?JK1) \land swrlb:divide(\text{PK1}, ?sk1, ?s32, ?s45, ?s50) \land \text{swrlb:divide}(\text{PK1}, ?sk1, ?s32, ?s45) \land \text{swrlb:divide}(\text{PK1}, ?sk1, ?s50) \land \text{hasPK1} (?m, ?PK1) \)

2) Aturan Perhitungan Total Pencapaian Kompetensi

Total pencapaian kompetensi dihitung dengan membagi hasil penjumlahan pencapaian masing-masing kompetensi dengan total jumlah kompetensi yang dalam penelitian ini yaitu 12, sesuai dengan rumus berikut ini.

\[
pk1 + pkp2 + pkp3 + pkp4 + pkp5 + pkp6 + pkp7 + pkp8 + pkp9 + pkp10 + pkp11 + pkp12
\]

(2)
Aturannya adalah sebagai berikut:

Rule 2:

\[
\text{mahasiswa}(m) \land \text{hasPKP1}(m, \text{PKP1}) \land \text{hasPKP2}(m, \text{PKP2}) \land \text{hasPKP3}(m, \text{PKP3}) \land \text{hasPKP4}(m, \text{PKP4}) \land \text{hasPKP5}(m, \text{PKP5}) \land \text{hasPKP6}(m, \text{PKP6}) \land \text{hasPKP7}(m, \text{PKP7}) \land \text{hasPKP8}(m, \text{PKP8}) \land \text{hasPKP9}(m, \text{PKP9}) \land \text{hasPKP10}(m, \text{PKP10}) \land \text{hasPKP11}(m, \text{PKP11}) \land \text{hasPKP12}(m, \text{PKP12}) \land \text{hasSTK}(m, \text{STK}) \land \text{swrl:lt有过于Equal}(\text{STK}, \text{SK}) \rightarrow \text{hasrecommendation}(m, "LULUS")
\]

Rule 4 recommendation1:

\[
\text{mahasiswa}(m) \land \text{hasTK}(m, \text{TK}) \land \text{hasSK}(m, \text{SK}) \land \text{swrl:lt有过于Equal}(\text{TK}, \text{SK}) \rightarrow \text{hasrecommendation}(m, "TIDAK LULUS")
\]

3) Aturan Penentuan Nilai Dalam Huruf

Penentuan nilai dalam huruf didapat dengan membandingkan total kompetensi dengan 4 level nilai yang sudah kita tentukan, yakni sebagai berikut:

- Nilai A : Nilai > 8
- Nilai B : 7 ≥ Nilai > 8
- Nilai C : 6 ≥ Nilai > 7
- Nilai D : Nilai ≤ 6

Rule3 nilaiA:

\[
\text{mahasiswa}(m) \land \text{hasTK}(m, \text{TK}) \land \text{hasSNA}(m, \text{SNA}) \land \text{swrl:lt有过于Equal}(\text{TK}, \text{SNA}) \rightarrow \text{hasnilai}(m, "A")
\]

Rule 3 nilaiB:

\[
\text{mahasiswa}(m) \land \text{hasTK}(m, \text{TK}) \land \text{hasSNA}(m, \text{SNA}) \land \text{hasSNB}(m, \text{SNB}) \land \text{swrl:lt有过于Equal}(\text{TK}, \text{SNA}) \land \text{swrl:lt有过于Equal}(\text{TK}, \text{SNB}) \rightarrow \text{hasnilai}(m, "B")
\]

4) Aturan Penentuan Rekomendasi Kelulusan

Penentuan rekomendasi kelulusan dengan membandingkan total kompetensi dengan standar kelulusan yang sudah ditentukan yaitu sebagai berikut:

- Lulus : Total kompetensi ≥ 6
- Tidak Lulus : Total Kompetensi < 6

Aturannya adalah sebagai berikut:

Rule 4 recommendation2:

\[
\text{mahasiswa}(m) \land \text{hasTK}(m, \text{TK}) \land \text{hasSK}(m, \text{SK}) \land \text{swrl:lt有过于Equal}(\text{TK}, \text{SK}) \rightarrow \text{hasrecommendation}(m, "TIDAK LULUS")
\]

5) Aturan Query

Rule Query:

\[
\text{mahasiswa}(m) \land \text{hasPKP1}(m, \text{PKP1}) \land \text{hasPKP2}(m, \text{PKP2}) \land \text{hasPKP3}(m, \text{PKP3}) \land \text{hasPKP4}(m, \text{PKP4}) \land \text{hasPKP5}(m, \text{PKP5}) \land \text{hasPKP6}(m, \text{PKP6}) \land \text{hasPKP7}(m, \text{PKP7}) \land \text{hasPKP8}(m, \text{PKP8}) \land \text{hasPKP9}(m, \text{PKP9}) \land \text{hasPKP10}(m, \text{PKP10}) \land \text{hasPKP11}(m, \text{PKP11}) \land \text{hasPKP12}(m, \text{PKP12}) \land \text{hasTK}(m, \text{TK}) \land \text{hasSNA}(m, \text{SNA}) \land \text{hasSNB}(m, \text{SNB}) \land \text{hasrecommendation}(m, \text{recomendation}) \rightarrow \text{swrl:selectDistinct}(m, \text{PKP1}, \text{PKP2}, \text{PKP3}, \text{PKP4}, \text{PKP5}, \text{PKP6}, \text{PKP7}, \text{PKP8}, \text{PKP9}, \text{PKP10}, \text{PKP11}, \text{PKP12}, \text{TK}, \text{nilai}, \text{recommendation})
\]
Pengujuan

Pengujuan dilakukan beberapa tahap, yaitu:

Pencapaian kompetensi dihitung dengan aturan 1 (pkompetensi: 1-12). Dari Gambar 3 terlihat untuk mahasiswa pertama dari 4 soal pendukung kompetensi 1 yaitu soal 30, soal 32, soal 45 dan soal 50 yang dilambangkan dengan property hasNK1_30, hasNK1_32, hasNK1_45 dan hasNK1_50, cuma 1 soal yang salah yaitu hasNK1_50 yang diulis dengan skor 0.0, sehingga dengan menggunakan persamaan 1 hasil pencapaian kompetensi 1 adalah 0.75. Dari Gambar 4 yang merupakan hasil query dari pengujian di protége terlihat bahwa pencapaian kompetensi1 untuk mahasiswa pertama juga 0.75. Hasil dari perhitungan pencapaian kompetensi 1 sampai kompetensi 12 akan terisi secara otomatis pada individual editor pada saat aturan 1 dijalankan.

3. Menghitung total pencapaian mahasiswa terhadap keseluruhan kompetensi.

Gambar 4 menunjukkan pencapaian masing-masing kompetensi mahasiswa pertama hasil dari pengujuan pada Protége. Dengan menggunakan persamaan 2 didapatkan total pencapaian kompetensi mahasiswa pertama adalah 0,8 sama dengan hasil query pengujian dengan protége yang juga sebesar 0,8.

4. Menghitung total nilai mahasiswa dalam huruf.

Tahap ini dihitung dengan menggunakan aturan 3 yaitu dengan membandingkan total pencapaian kompetensi dengan standar batasan nilai yang sudah ditentukan (batasan nilai A, B, C dan D). Untuk mahasiswa pertama yang memiliki total pencapaian kompetensi sebesar 0.8, setelah dibandingkan dengan persamaan 3-6, maka nilainya adalah "B" sama dengan hasil query pengujian pada Gambar 4.

5. Mendapatkan rekomendasi kelulusan mahasiswa.

Gambar 3. Individual editor
Tahap ini dilakukan dengan membandingkan standar kelulusan dan total nilai. Untuk mahasiswa pertama yang memiliki total pencapaian kompetensi 0,8 setelah dibandingkan dengan standar kelulusan pada persamaan 7 dan 8 maka mahasiswa pertama mendapatkan rekomendasi kelulusan “LULUS” sama dengan yang terlihat pada Gambar 4.

Dari analisa hasil pengujian seperti yang dijelaskan sebelumnya, terlihat bahwa rancangan ontologi sudah dapat memberikan penilaian dan rekomendasi kelulusan, sesuai dengan aturan yang dibuat.

5. Kesimpulan

Rancangan ontologi yang dibuat menunjukkan hubungan antara kelas Mahasiswa dengan propertinya, ada dua macam properti yaitu asserted property (property yang didefinisikan) inverted property (property hasil perhitungan inferensi). Pada penelitian ini terdapat 4 rancangan aturan, antara lain: aturan untuk menghitung pencapaian masing-masing kompetensi (12 aturan mewakili 12 kompetensi), aturan untuk menghitung total pencapaian kompetensi, aturan untuk menentukan nilai dalam huruf dan aturan untuk menentukan rekomendasi kelulusan.

Dari hasil pengujian terlihat bahwa rancangan ontologi dan aturan yang dibuat sudah cukup akurat dalam memberikan penilaian dan rekomendasi kelulusan.

Daftar Pustaka

Barnaras, L. Laresgorti, and J Corera (1996), Building and Reusing Ontologies for Electrical Network Application, In 12th European Conference on Artificial Intelligence, pages 298–302

SK Mendiknas No 045/U/2002

