

Distribution of cap5 and cap8 genes of Staphylococcus aureus isolated from subclinical mastitis cows in Central Java, Indonesia

Siti Irina Oktavia Salasia1, Khusnan2, and Sidna Artanto3

1 Clinical Pathology Department, Faculty of Veterinary Medicine, Gadjah Mada University, Jl. Olah Raga, Yogyakarta 55281, Indonesia
2 Academy of Farming, Brahmaputra, Jl. Ki Ageng Pemanahan, Nitikan, Sorosutan, Umbulharjo, Yogyakarta 55162, Indonesia

Abstract

Mastitis is one of the major problems challenging the dairy industry worldwide. Among the various organisms causing mastitis, Staphylococcus aureus is considered to be one of the main pathogens causing this disease. More effective therapeutic or preventive approaches are sorely needed. The predominance of staphylococcal capsular polysaccharide type 5 and 8 among isolates from cows seems to be a greater variation in the distribution of capsular serotypes. In the present study 32 S. aureus isolated from milk samples of subclinical mastitis cows from different farms in Central Java, were identified by using conventional methods and by molecular analysis amplifying the gene encoding 23S rRNA. The isolates were further characterized for the genes encoding capsular polysaccharide type 5 (cap5) and type 8 (cap8). Based on cultural and biochemical properties as well as by amplification of a S. aureus specific section of the 23S-rRNA gene, all 32 isolates were identified as S. aureus. The PCR amplification of the gene segment encoding the capsular polysaccharide yielded cap5 with a size of 880 bp for most (93.7%) of the isolates investigated. However, the capsular polysaccharide cap8 with an amplicon size of 1147 bp were observed only of 6.28% from the isolates.

Keywords: Staphylococcus aureus, capsular polysaccharide, mastitis

Introduction

Staphylococcus aureus is a well known bacterial pathogen of both humans and animals. In humans this bacterium causes food poisoning, toxic shock and a variety of pyogenic infections (De Buyser et al., 2001; McCormick et al., 2001; Le Loir et al., 2003). In animals S. aureus is a major cause of mastitis in cows, sheep and goats leading to severe economic losses worldwide (Brückler et al., 1994; Stephan et al., 2001; Salasoa et al., 2004).

Staphylococcus aureus expresses a number of factors that have the potential to interfere with host defense mechanisms. This includes both structural and soluble elements of the bacterium. Capsular polysaccharides are produced by almost 90% of S. aureus strains. Although 11 capsular serotypes have been described, most isolates of S. aureus belong to capsule types 5 or 8 (Karaka et al., 1982; Hochkeppel et al., 1987; Salasoa et al., 2003; Salasoa et al., 2004). The surface polysaccharide has been called a microcapsule because it can be visualized only by electron microscopy unlike the true capsules of some bacteria which are readily visualized by light microscopy. S. aureus strains isolated from infections express high levels of the polysaccharide but rapidly lose the ability when cultured in the laboratory. The function of the capsule in virulence is not entirely clear. Although it does impede phagocytosis in the absence of complement, it also impedes colonization of damaged heart valves, perhaps by masking adhesions (Todor, 2002). Hyperimmune serum or monoclonal antibodies directed towards
surface components (e.g., capsular polysaccharide or surface protein adhesins) could theoretically prevent bacterial adherence and promote phagocytosis by opsonization of bacterial cells (Todar, 2002). Kataoka et al. (1982) reported that microcapsules elaborated by type 5 and 8 S. aureus strains were antiphagocytic. Nilsson et al. (1997) showed that mice inoculated with S. aureus expressing serotype 5 had a higher frequency of arthritis and a more severe form of the disease than animals inoculated with nonencapsulated mutant strains. Furthermore, S. aureus serotype 5 was antiphagocytic and able to enhance bacterial virulence in murine bacteremia model (Thakker et al., 1998).

The gene cap8 was frequently found among the S. aureus in Germany (Salasia et al., 2004) and in other countries in Europe (Tollerud et al., 2000). In contrast with these studies, it was reported that the gene cap5 was frequently found among the S. aureus isolated from bovine milk in Indonesia (Salasia et al., 2004). However, S. aureus isolated from human skin infections in Yogyakarta generally harboured the gene cap8 rather than gene cap5.

The present study was designed to evaluate the distribution of the gene capsular polysaccharides (cap5 and cap8) of S. aureus isolated from subclinical cases of mastitis cows in Central Java. Information concerning the geographical distribution of capsular types is important for the rational design and use of vaccines against S. aureus mastitis based on capsular antigens.

Materials and Methods

Bacterial isolates and identification

A total of 32 S. aureus cultures from Daerah Istimewa Yogyakarta/D. I. Y. (Kaliurang and Bantul), Boyolali and Baturaden in Central Java were used in this study. The S. aureus isolated from subclinical mastitis were identified by using conventional methods (Brückler et al., 1994). The isolates were further characterized by molecular analysis amplifying the gene encoding 23S rRNA (Straub et al., 1999).

PCR amplification of gene encoding staphylococcal capsular polysaccharides

The capsular polysaccharides identification were conducted by detection of the S. aureus cap5 and cap8 genes using specific primers. PCR amplification of the capsular polysaccharide genes with primers (1): 5'-ATG ACG ATG AGA TTC GGC C-3' and (2): 5'-CTC GGA TAA CAC CTC TTT C-3' for cap5 and primers (1): 5'-ATG ACG ATG AGA ATG CGG C-3' and (2): 5'-CAG CTA ACA TAA GGC AAC-3' for cap8 (Moore and Lindsay, 2001).

Isolation of genomic DNA was carried out by picking 3-5 colonies from freshly subcultured S. aureus. The colonies were homogenized in 50 μl TE buffer (10 mmol of Tris HCl/l, 1 mmol of EDTA/l, pH 8.0), followed by the addition of 1 μl lysostaphin (1.8 U/μl; Sigma, Deisenhofen, Germany). After an incubation for 1 h at 37°C 1 ml proteinase K (15.1 mg/μl, Boehringer, Mannheim, Germany) was added and the suspension was reincubated for 2 h at 56°C. The proteinase K was finally inactivated through boiling of the mixture for 10 min. After centrifugation at 10,000 x g for 5 min the supernatant was cooled on ice before use in PCR. For PCR amplification, the reaction mixture (20 μl) contained 0.7 μl of primer 1 (10 pmol/μl), 0.7 μl of primer 2 (10 pmol/μl), 0.4 μl of deoxynucleoside triphosphate (10 mmol/l; MBI Fermentas, St. Leon-Rot, Germany), 2.0 μl of 10 x thermoplastic buffer (Promega, Mannheim, μl, Promega), and 12.9 μl of distilled water. Finally, 2.0 μl of DNA preparation was added to each 0.2-μl reaction tube. The tubes were subjected to thermal cycling (Eppendorf, Germany) with the programs: 20 x (94°C 15s, 57°C 15s, 72°C 30s) for cap5 and 20 x (94°C 15s, 52°C 15s, 72°C 30s) for cap8. The presence of PCR products was determined by electrophoresis of 10 μl of the reaction product in a 2% agarose gel with 1 x TAE buffer (40 mM Tris-

HCl, 1 mM EDTA/l, 1.14 ml/l glacial acetic acid, pH 7.8) at 70 – 100 Voltage.

Results and Discussion

According to cultural and biochemical properties as well as by amplification of a S. aureus specific section of the 23S rRNA gene, all 32 isolates used in the present investigation were identified as S. aureus. A PCR-based system for identification of S. aureus isolated from various origins had already been used in previous paper (Annemüller et al., 1999; Akinen et al., 2001; Salasia et al., 2004). The molecular identification used oligonucleotide primers targeted to species-specific parts of the gene encoding the 23S rRNA. This target gene allowed a rapid identification of this species with high sensitivity and specificity. As was found by Straub et al. (1999), the amplification of the gene encoding an S. aureus-specific part of the 23S rRNA revealed an amplicon with a size of 1250 bp (Fig. 1) for all S. aureus isolates investigated.

The PCR amplification of the gene segment encoding the capsular polysaccharide yielded type 5 (cap5) with a size of 880 bp for 30 isolates (93.75%) from D. I. Yogyakarta (Kaliurang and Bantul), Boyolali and Baturaden, Central Java. However, the capsular polysaccharide type 8 (cap8) with an amplicon size of 1147 bp was observed only of two cultures (6.25%) from D. I. Yogyakarta. Typical amplicons of the genes encoding staphylococcal capsular polysaccharide type 5 (cap5) and type 8 (cap8) are shown in figure 2 and 3.

![Figure 1](image1.png)

Figure 1. Amplicons of the gene encoding staphylococcal capsular polysaccharide 5 (cap5) of S. aureus with size of 1250 bp. M, DNA molecular weight marker VI (Roche, Mannheim, Germany).

![Figure 2](image2.png)

Figure 2. Amplicons of the gene encoding staphylococcal capsular polysaccharide 5 (cap5) of S. aureus with size of 880 bp (lanes 1-4). M, DNA molecular weight marker VI (Roche, Mannheim, Germany).

The results of capsular genotyping of 32 isolates of S. aureus from various regions in Central Java are shown in Table 1.

![Figure 3](image3.png)

Figure 3. Amplicons of the gene encoding staphylococcal capsular polysaccharide 8 (cap8) of S. aureus with size of 1147 bp (lanes 1-4). M, DNA molecular weight marker VI (Roche, Mannheim, Germany).

| Table 1: Distribution of capsular polysaccharide genes of S. aureus isolated from milk samples of subclinical mastitis cows from different farms in Central Java by using PCR amplification. |
|---|---|---|---|
| Region of farm | No. of farms | No. of isolates | % cap5 | % cap8 |
| Yogyakarta | 11 | 11 | 100.0 | 0.0 |
| Central Java | 20 | 20 | 100.0 | 0.0 |
| Total | 31 | 31 | 100.0 | 0.0 |

<table>
<thead>
<tr>
<th>Materials</th>
<th>No. of farms</th>
<th>No. of isolates</th>
<th>% cap5</th>
<th>% cap8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yogyakarta</td>
<td>11</td>
<td>11</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Central Java</td>
<td>20</td>
<td>20</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>31</td>
<td>100.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
For many human and animal pathogens, capsular polysaccharides play an important role in bacterial evasion of host immune surveillance, thereby conferring virulence to the pathogens (Nilsson et al., 1997; Todar, 2005). In the present study, we showed that the gene encoding staphyloccocal capsular polysaccharide 5 (caps) more frequent found among S. aureus isolated from milk cows in Central Java than cap8. This finding corresponds with the previous study described by Salasia et al. (2004). Staphyloccocal polysaccharide capsule of type 5 was reported by Karakawa et al. (1997) has an antiphagocytic substance and could enhance the bacterial virulence (Thakker et al., 1998; Nilsson et al., 1997).

Among the 11 serotypes of capsular polysaccharide identified, type 1, 2, 3, and 8 have been chemically characterized. Most strains from bovine milk could be classified as type 5 and 8 (Guidry, 1997). The repeating units of capsular polysaccharide type 5 and 8 are almost identical except for the linkages between the amino sugars and the position of the O-acetylation. Capsular polysaccharide type 5 play a role in the pathogenesis of S. aureus, most probably by evading bacterial uptake and killing by phagocytes (Nilsson et al., 1997; Nilsson et al., 1997; Tollersrud et al., 2000).

The distribution of isolates expressing capsular polysaccharide type 5 or type 8 were different among the various countries. The gene cap5 was frequently found among the S. aureus in Germany (Salasia et al., 2004) and in Europa (Tollersrud et al., 2000). S. aureus isolated from human skin infections in Yogyakarta generally harboured the gene cap8 rather than gene cap5 (Salasia et al., 2003). In contrast, it was reported that the gene cap8 was frequently found among the S. aureus isolated from bovine milk in Indonesia (Salasia et al., 2004).

A better knowledge on the distribution of capsular polysaccharides of S. aureus in dairy herds in Central Java might help to formulate strategies to control of infection.

Acknowledgment

This work was supported by the Ministry of Research and Technology, Republic of Indonesia, through Riset Unggulan Terpadu (RUT) XI. The authors wish to thank drh. Sugiyono for sugar preparation.

References

