PERANCANGAN PELAT FONDASI SISTEM CAKAR AYAM DENGAN METODE BALOK PADA FONDASI ELASTIS
Hary Christady Hardiyatmo*1

ABSTRACT
Cakar Ayam System has been used to support many structures including towers, buildings, runway etc. Design of this foundation needs to consider stability against bearing capacity failure, settlement as well as failure due to the breaking of foundation slab. The deflection, bending moment and shearing force on the foundation slab due to loading should be analysed properly. This paper presents the method to analyse the structural stability of Cakar Ayam System using the method of Beam on Elastic Foundation.

Keywords: Cakar Ayam system, modulus of vertical subgrade reaction, modulus of horizontal subgrade reaction, deflection, rotation, bending moment, shearing force.

PENDAHULUAN
Fondasi cakar ayam telah banyak digunakan untuk fondasi bangunan gedung, runway dan tower yang dihubungkan di atas tanah lunak. Fondasi sistem Cakar Ayam termasuk fondasi dangkal, karena kedalaman dasar fondasi lebih kecil dibandingkan dengan lebar fondasinya. Penempatan struktur fondasi Cakar Ayam ini umumnya menggantung pada lapisan tanah permukaan. Dari bentuknya yang melatar tersebut maka fondasi ini termasuk tipe fondasi rakit (raft foundation). Karena pelat Cakar Ayam yang tipis (sekitar 10 - 20 cm) maka fondasi ini berperilaku sebagai fondasi yang flexible.

STRUKTUR FONDASI CAKAR AYAM
Fondasi sistem Cakar Ayam terdiri dari pelat beton bertulang yang relatif tipis yang didukung oleh pipa-pipa beton berdiameter yang dipasang vertikal dengan jarak 200 - 250 cm dan disatukan secara monolit dengan pelat betonnya (Gambar 1). Tebal pelat beton berkisar diantara 10 - 20 cm, sedang pipa-pipa beton berdiameter 120 cm, tebal 1 cm dan panjang berkisar antara 150 - 250 cm. Pipa-pipa beton ini berfungsi sebagai pengaku pelat. Dalam mendukung beban bangunan, pelat, pipa beton dan tanah yang terkukur di dalam fondasi bekerja sama sehingga menciptakan suatu sistem komposit yang di dalam cara bekerjanya secara keseluruhan akan ideensik dengan fondasi rakit (raft foundation).

MEKANISME SISTEM CAKAR AYAM DALAM MENDUKUNG BEBAN

Gambar 2. Lendutan akibat beban titik dan rotasi cakar.

Bila sistem Cakar ayam digunakan untuk mendukung beban statis dan permanen...
LANDASAN TEORI

Usulan perancangan sistem Cakar ayam akan dilakukan dengan menggunakan metoda “Balok pada fondasi elastis” (Beam on elastic foundation) (Hetenyi, 1974). Dalam hitungan diasumsikan bahwa tanah sebagai media pendukung seperti titik-titik tak terhingga yang dianggap berpom-pot asal sesuatu pegas-pegas individu yang tidak saling mempengaruhi, sedangkan pegas-pegas tersebut diasumsikan mampu mendukung gaya tarik maupun gaya tekan. Untuk menghitung lundutan fondasi yang terletak di atas tanah, dianggap bahwa fondasi bersama balok harus yang didukung oleh media elastis di sekitar benuanya (Gambar 3).

\[y = \frac{PL}{k} e^{-\lambda} \cos \lambda x + \sin \lambda x \]

\[\lambda = \sqrt{\frac{k}{D}} \]

\(k \) = modulus reaksi subgrade vertikal, \(b \) = lebar pelat yang diperhitungkan. Modulus reaksi subgrade vertikal \((k_b)\) diperoleh dari uji beban pelat (plate load test).

\[M = \frac{Q L}{4} e^{-\lambda x} (\cos \lambda x - \sin \lambda x) \]

\[D = \frac{Q}{2} e^{-\lambda x} \cos \lambda x \]

\[y = \frac{M_0 x}{k} e^{-\lambda x} \sin \lambda x \]

\[\theta = \frac{M_0 x}{k} e^{-\lambda x} (\cos \lambda x - \sin \lambda x) \]

\[M = \frac{M_0}{2} e^{-\lambda x} \cos \lambda x \]

\[D = \frac{M_0 x}{2} e^{-\lambda x} (\cos \lambda x - \sin \lambda x) \]

METODO PERANCANGAN STRUKTUR FONDASI CAKAR AYAM

Dari hasil pengamatan dalam pengujian, jarak penyebaran lundutan dari pusat beban akibat beban terjadi pada jarak kira-kira 4.5 kali diamater cakar (Hardiyanto dkk., 1999). Selain itu, hasil pengujian yang lain menunjukkan bahwa tekanan tanah lateral yang melawan rotasi cakar bukan merupakan tekanan tanah pasif \(\left(p_h = H \right) \) tapi tekanan tanah yang nilaiya sedikit lebih besar dari \(p_h = H \). Hal ini karena saat pembesaran terjadi umumnya tanah di belakang cakar masih jauh dari kondisi noluh atau tanah masih dalam kondisi “elastis”. Dengan kata lain, reaksi tekanan tanah di belakang cakar tidak dapat dianggap dengan koefisien tekanan tanah pasif \(k_p \) tapi harus dihitung dengan koefisien \(k_h \) (modulus reaksi subgrade horizontal). Sehingga tekanan tanah lateral \((p_h) \) di sebaran keseluruhan cakar dinyatakan oleh:

\[p_h = 100k_h \]

dengan \(H \) = tinggi cakar, \(\gamma \) = berat volume tanah, \(k_h = \) modulus subgrade horizontal dan \(\beta = \) sudut rotasi cakar akibat beban yang bekerja. Tekanan tanah lateral total \((p_h) \) di belakang cakar adalah luas segitiga tekanan, yaitu:
Besarnya modulus subgrade horizontal \((k_h)\) dapat dikaitkan dengan koefisien \(\lambda\) (modulus reaksi subgrade vertikal). Dalam merangkum pelat fondasi Cakar Ayam akan digunakan metode "Balok pada fondasi elitis" yang telah dibawakan oleh Heteny (1974). Dalam hal ini, sistem Cakar Ayam yang berupa pelat-melear, dinamisit sebagai balok dengan lebar tertentu yang bergantung pada jarak Cakar (Gambar 4). Assumis asumsi dalam hitungan perancangan yang diusulkan adalah:

1. Tanah disanggap media elastis.
2. Pelat dianggap sebagai balok.
3. Hubungan pelat dan Cakar sangat kaku.
4. Tanah dasar fondasi homogen.
5. Lendutan pelat dan rotasi cakar kecil.
6. Momen lawan Cakar dianggap bekerja di pusat Cakar yang terletak pada pelat.
7. Modulus reaksi subgrade vertikal tanah di bawah pelat dan di bawah cakar bernilai sama.

Langkah hitungan perancangan struktural adalah sebagai berikut:

1. Dicoba bentuk sistem Cakar ayam dengan tebal pelat, dimensi dan jarak cakar tertentu. Hila diambil jarak Cakar yang sama, maka lebar pelat yang diperhitungkan akan sama dengan jarak Cakarnya.
2. Lendutan pelat akihat beban titik dihubung dengan menanam pelat memenuhi

\[
y = \frac{2k_h}{k} e^{\lambda x} (\cos \lambda x + \sin \lambda x)
\]

Dengan \(x\) adalah jarak dari titik posisi beban. Dalam tahap hitungan ini, momen perlawanan tanah pada Cakar cakar belum dibentuk. Nilai \(k\) yang digunakan untuk menentukan nilai \(\lambda\) ditentukan dengan menggunakan persamaan:

\[
k = k_h\frac{b}{k}
\]

Dengan \(k\) = modulus reaksi subgrade dari hasil plate load test, \(b\) = lebar pelat.

Karakteristik sistem \((\lambda)\), ditentukan dengan persamaan:

\[
\lambda = \frac{k}{4.E.J}
\]

Dengan, \(E\) = modulus elastisitas pelat dan \(I\) = momen inersia pelat.

3. Rotasi pelat \((\theta)\) akihat beban titik dihihng dengan persamaan:

\[
\theta = \frac{O_{\theta}}{k} e^{\lambda x} \sin \lambda x
\]

4. Rotasi pelat \((\theta)\) posisi titik tertentu dianggap sama dengan rotasi cakarnya. Rotasi cakar ini akan mengakibatkan perlawanan tanah yang berupa tekanan tanah lateral terhadap cakar yang dapat dihitung dengan persamaan:

\[
P_k = 0.5 d \frac{h^2}{d^2} 0.5k_s
\]

Dengan titik tangkap gaya pada \(2/3\) dari puncak Cakar (dengan \(d\) = diameter cakar dan \(h\) = tinggi cakar).

5. Momen perlawanan cakar \((M_c)\) pada cakar-cakar di sekitar beban dihihng dengan persamaan:

\[
M_c = 1/3 H^2 0.5k_s d
\]

Karena penyebaran lendutan umumnya berjarak sekitar 4 sampai 5 m dari pusat beban, maka untuk jarak cakar 2 sampai 2,5 m, cakar-cakar yang memberikan perlawanan terhadap lendutan berjumlah 4 Cakar (2 di kiri beban dan 2 di kiri beban).

6. Lendutan, momen dan gaya lintang di setiap titik pada pelat akihat beban titik \((Q)\) dihihng dengan persamaan:

a. Lendutan yang terjadi pada pelat di sebelah kanan beban \((x_a>0)\)

\[
y_a = \frac{Q_k}{2k} e^{\lambda x_a} (\cos \lambda x_a + \sin \lambda x_a)
\]

Dengan \(x_a\) adalah jarak diukur dari pusat beban. Nilai \(y_a\) pada setiap titik di sebelah kiri beban mempunyai nilai dan tanda yang sama dengan di kanan beban (simetri).
\[M_0 = \frac{Q}{2} \left(\cos \lambda_x + \sin \lambda_x \right) \]
\[D = D_0 + \sum_{i=1}^{n} D_{Mi} \]

Nilai \(M_0 \) pada setiap titik di sebelah kiri beban mempunyai nilai yang sama dengan di kawasan beban (simetri).

Gaya lintang pada pelat di sebelah kiri beban \((x > 0)\) dithitung dengan persamaan:
\[D_{Mi} = \frac{Q}{2} e^{\lambda_x} \cos \lambda_x \]

Nilai \(D_{Mi} \) pada setiap titik di sebelah kiri beban mempunyai nilai yang sama, tapi berlawanan tanda.

7. Lenjutan, motiva dan gaya lintang di setiap titik pada pelat, akibat momen perlawanan cakar dihitung dengan persamaan:

\[Y_{Mi} = \frac{M_{Mi}}{2} e^{\lambda_x} \sin \lambda_x \]

dengan \(x \) adalah jarak distri dari pusat cakar ke-i. Nilai \(Y_{Mi} \) pada setiap titik di sebelah kiri pusat cakar ke-i mempunyai nilai yang sama, tapi berlawanan tanda.

a. Momem yang terjadi pada pelat di sebelah kanan pusat cakar ke-i
\[M_{Ma} = \frac{M_{ei}}{2} e^{\lambda_x} \cos \lambda_x \]

Nilai \(M_{Ma} \) pada setiap titik di sebelah kanan pusat cakar ke-i mempunyai nilai yang sama, tapi berlawanan tanda.

b. Gaya lintang yang terjadi pada pelat di sebelah kanan pusat cakar ke-i
\[D_{Ma} = \frac{M_{ei}}{2} e^{\lambda_x} \sin \lambda_x \]

Nilai \(D_{Ma} \) setiap titik di sebelah kanan pusat cakar ke-i mempunyai nilai dari tanda yang sama, di kawasan pusat cakar ke-i.

8. Lenjutan, momen dan gaya lintang total adalah jumlah total dari penguak akibat beban arsiput (Q) dan pengaruh momen perlawanan cakar di setiap titik.

a. Lenjutan total pada pelat
\[y = y_0 + \sum_{i=1}^{n} Y_{Mi} \]

b. Momen total pada pelat
\[\theta \]

Selisih lenjutan yang relatif besar disebabkan hitungan dengan memakai teori “Balok pada fondasi elastis” ini menganggap bahwa pelat yang melibat dianggap sebagai balok, sehingga hasil hitungan lundutan umumnya lebih besar daripada lundutan yang terjadi di bangunan. Untuk itu pada penggunaan metoda hitungan yang disertakan ini, faktor aman (SF) dapat diambil 1 - 1.5. Faktor aman tersebut dapat disempurnakan pada modulul subgrade vertikal (k) tanah.

Tabel 1. Perbandingan hasil hitungan dan pengamatan lundutan pelat untuk kenaikan beban di Banda Polonia Medan.

<table>
<thead>
<tr>
<th>Jarak di pusat beban (m)</th>
<th>Lenjutan pelat pada Q = 80 ton</th>
<th>Hasil pengamatan (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12,03</td>
<td>5.4</td>
</tr>
<tr>
<td>1.00</td>
<td>11,00</td>
<td>3.05</td>
</tr>
<tr>
<td>2.00</td>
<td>7,01</td>
<td>1,05</td>
</tr>
<tr>
<td>3.00</td>
<td>3,6</td>
<td>0</td>
</tr>
<tr>
<td>4.00</td>
<td>7,48</td>
<td>-0,04</td>
</tr>
<tr>
<td>5.00</td>
<td>0,71</td>
<td>-0,03</td>
</tr>
</tbody>
</table>

KESIMPULAN

Fondasi Sistem Cakar Ayam terangkum fondasi dangan yang sifatnya fleksibel. Untuk cara perhitungan dengan metoda “Balok pada fondasi elastis” menghasilkan alur lundutan yang identik dengan lundutan dari hasil pengamatan. Hasil hitungan yang
perancangan pelat sistem Cakar Ayam dengan menggunakan faktor aman SF = 1,5 yang dapat diterapkan pada modulus modulus vertikal (k_v) tanahnya.

REFERENSI

KAJIAN TERHADAP FONDASI SENDUNG KARET KALI LAMONG I DI KABUBATEN GRESIK JAWA TIMUR
Kabul Basah Suryoelendo

ABSTRACT
Karet Kali Lamong 1 weir is situated on Kedungpung Village, Cengkrong Sub District, Gresik District of East Java Province. This weir is utilized to supply potable water for Gresik area. The weir was constructed on soft clay layer with shallow ground water surface. The foundation uses the 15 m pile length. During the pile driving, the pile penetrates automatically into the ground because of its own weight, and it was disappeared into the ground. In another word, it can be said that the piles were drawn into the ground. Thus, the pile driving is then stopped. Considering this situation, a study towards the construction of the foundation is highly required.

To conduct a study towards the weir, an observation about the condition of the soil layer under the surface is required. Based on this observation, information to determine the foundation type can be obtained. For the purpose of the field test, the 20 kN static cone penetration and hand auger apparatus are utilized to gain the soil sample. The laboratory test is needed to examine the sample and to determine the physical and mechanical characteristics of the soil samples.

Based on this study, the foundation type of Karet Kali Lamong 1 weir is the 23 to 30 meter piles with allowable load capacity of single piles of 350 kN (compression), 35 kN (traction), and 35 kN (lateral). The 15 meter pile (such as the one that has been driven) can not be used as the foundation pile for Kare Kali Lamong 1 weir due to the pile length is not adequate and the load capacity of single piles can not restrain the working load.

PENUTUPAN
Bengawan Solo merupakan salah satu sungai terbesar di Pulau Jawa dengan daerah pengaliran lebih 16.100 km², pjesang air sungai 600 km, terletak di dua Daerah Tingkat I yaitu Daerah Tingkat I Jawa Tengah, dan Daerah Tingkat I Jawa Timur.

Perkembangan di sekitar daerah ini, sudah demikian pesat dengan munculnya berbagai kawasan industri dan pemukiman baru, sehingga untuk dapat melayani kebutuhan air bersih di kawasan andalan di sub Bengawan Solo Itite, diperlukan rencana umum sistem penyediaan air baku yang realistik.

Sumber daya air yang diandalkan untuk skala besar adalah sungai Bengawan Solo, berita anak-anak sungainya di daerah Bengawan Jero, Kali Lamong, pembangunan karet kali lamong 1 weir mendapat bimbingan teknisi maestrosin dan.