uap air pengaruhnya terhadap penimbunan luas permukaan dan distribusi ukuran pori berkebalikan dengan perluasan pengasaman. Seperti yang terlihat pada Tabel dan Gambar di atas, katalis H-ZYZ luas permukaannya 21,797450 m²/g, distribusi ukuran pori 176,255165 (A), setelah mengalami perluasan uap air (H₂O) luas permukaannya menjadi 145,48623 m²/g, distribusi ukuran porinya menjadi 20, 194625 (A). Pengaruh masuknya logam Cr pada katalis H-ZYZ yang tidak mengalami perluasan uap air cenderung memperluas luas permukaan pori dan menurunkan distribusi ukuran pori. Tetapi sebaliknya pengaruh masuknya logam Cr pada katalis H-ZY-Z yang mengalami perluasan uap air akan memperkecil luas permukaan dan menurunkan distribusi ukuran porinya. 

Tabel 4. Hasil perengkahan fraksi minyak bumi dengan berbagai katalis

<table>
<thead>
<tr>
<th>Nama katalis</th>
<th>Berat katalis (g)</th>
<th>VGO (g)</th>
<th>Gas (g)</th>
<th>Destilat (g)</th>
<th>Kokas (g)</th>
<th>Sisa VGO (g)</th>
<th>Konversi total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zw</td>
<td>1.9918</td>
<td>1.9835</td>
<td>0.0023</td>
<td>0.0031</td>
<td>0.9577</td>
<td>1.3804</td>
<td>30.4058</td>
</tr>
<tr>
<td>Zw-s</td>
<td>1.9904</td>
<td>2.0000</td>
<td>0.0023</td>
<td>0.0028</td>
<td>0.8150</td>
<td>1.3579</td>
<td>32.1500</td>
</tr>
<tr>
<td>Zn</td>
<td>1.9998</td>
<td>1.9662</td>
<td>0.0049</td>
<td>0.0025</td>
<td>0.6027</td>
<td>1.7391</td>
<td>32.3827</td>
</tr>
<tr>
<td>H-Zw-s</td>
<td>1.9966</td>
<td>1.9884</td>
<td>0.0041</td>
<td>0.0056</td>
<td>1.1108</td>
<td>0.8181</td>
<td>38.5853</td>
</tr>
<tr>
<td>Cr-HZw</td>
<td>2.0013</td>
<td>1.9608</td>
<td>0.0039</td>
<td>0.0023</td>
<td>0.5414</td>
<td>1.3823</td>
<td>29.9932</td>
</tr>
<tr>
<td>Cr-HZw-s</td>
<td>1.9985</td>
<td>1.9606</td>
<td>0.0019</td>
<td>0.0015</td>
<td>0.4998</td>
<td>1.3976</td>
<td>30.5602</td>
</tr>
<tr>
<td>Cr-HZp</td>
<td>1.9947</td>
<td>1.9823</td>
<td>0.0011</td>
<td>0.0005</td>
<td>0.7161</td>
<td>1.2596</td>
<td>36.4576</td>
</tr>
<tr>
<td>Cr-HZp-s</td>
<td>1.9989</td>
<td>1.9507</td>
<td>0.0043</td>
<td>0.0062</td>
<td>0.4817</td>
<td>1.3825</td>
<td>28.3077</td>
</tr>
<tr>
<td>Thermal</td>
<td>1.9866</td>
<td>0.0769</td>
<td>0.0022</td>
<td>0.4988</td>
<td>1.4077</td>
<td></td>
<td>29.1402</td>
</tr>
</tbody>
</table>

Perengkahan fraksi minyak bumi dengan berbagai katalis


2. Perluasan uap air cenderung memperluas luas permukaan pori dan menurunkan distribusi ukuran pori. Tetapi sebaliknya pengaruh masuknya logam Cr pada katalis H-ZY-Z yang mengalami perluasan uap air akan memperkecil luas permukaan dan menurunkan distribusi ukuran porinya.

3. Zerlit yang didekalinasi kemudian dimodifikasi dengan menambahkan logam Cr akan menghasilkan katalis, yang melihai aktivitas terengah fraksi minyak bumi yang besar dengan pembentukan kokas yang relatif kecil.

DAFTAR PUSTAKA


Mukhadham Nurhiday, Wega Trisunayantri, M. Utoro Yahya, Bambang Setiati

---

Indonesian Journal of Chemistry

STORAGE AND CONDITION OF BIOMASS INFLUENCE TO BIOSORPTION OF LEAD (II) AND ZINC(II) BY Saccharomyces cerevisiae BIOMASS

Pengaruh Lama dan Konsumsi Penyimpanan Biomassa terhadap Biosorpsi Timbal (II) dan Seng (II) oleh Biomassa Saccharomyces cerevisiae

JASMIDI
Chemistry Dept., Fac. of Mathematics and Natural Sciences, Faculty of Education, Medan, Medan

EKO SUGIARDO, MUDJARAN
Chemistry Dept., Fac. of Mathematics and Natural Sciences, GMU, Yogjakarta

ABSTRACT

The influence of length and condition of Biomass Storage on the biosorption of lead and zinc that present together in a solution by Saccharomyces cerevisiae biomass were studied.

In this experiment, variables of length and condition of biomass storage were examined. Concentration of lead and zinc were determined by atomic absorption spectrophotometric (AAS) using air-acetone as atomizing flame. Loading of lead and zinc on the biomass were determined as the difference between the initial and the final concentration of lead and zinc in the solution.

Biosorption of lead and zinc were influenced by condition and storage of the biomass. Storage of biomass in the room temperature for one week cause an increasing uptake. Storage for longer period result in decrease of lead and zinc uptake. Storage of biomass in a freezer up to 2 weeks increased the uptake of lead, but did not influence the uptake of zinc. Storage for longer period decreased the uptake of both of lead and zinc. For all condition the uptake of lead higher than the uptake of zinc by Saccharomyces cerevisiae.

Key words: biosorption, lead, zinc, Saccharomyces cerevisiae.

PENDAHULUAN

Berkahagi jenis industri merupakan serangkaian penceaman logam berat ke lingkungan, diantaranya adalah logam timbal dan seng. Pencemaran logam berat di dalam lingkungan perairan berbeda sifatnya dengan pencemar zat organik, pencemar logam ini tidak dapat dirusak [5].

Sebagian besar pencemaran logam yang terdapat dalam perairan bersifat toksik bagi lingkungan dan hanya dapat ditolak pada kadar mikrogram, oleh karena itu, air bersih yang mengandung logam berat perlu didahului sehingga keberadaan katalis K' tidak mempengaruhi proses pengolahan daya. Volesky dan May Phillips (1985), menemui penyerapan beberapa logam berat pada komponen biologis dan klorofluorokarbon oleh biomass S. cerevisiae. Hasil penelitian menunjukkan bahwa kondisi perturbasi kultur dapat mempengaruhi kaptasan penyerapan logam, yaitu khamir strain lewer's hidup dan mati: U=Zn+Cu+Cd+Pb, khamir strain baker's mati Zn+Cu+Cd+Pb, serapan S. cerevisiae hidup dan mati sama terhadap uranium dan seng. Avery dan Tob (1992), mempelajari penyerapan stromium oleh S. cerevisiae strain bewer's dan labor. Hasil penelitian menunjukkan bahwa...
HASIL DAN PEMBAHASAN

Hasil penelitian pengaruh lama dan kondisi penyimpanan biomassa terhadap sebaran dan pengaruh YEPD (yeast extract peptone dextrose) diuhtu dengan cara menambahkan larutan dekstrona ke dalam larutan YEP, sehingga diperoleh konsentrasi dekstrona akhir 2%.

Penanaman (inkulasi) kultur S. cerevisiae menggunakan media YEPD dengan picking dan dijaga tetap steril, dari sistem utara-tertarsar, kemudian ditambahkan dalam inkubator berputar dengan kecepatan 175 rpm selama 24 jam pada suhu 30 °C.

Setelah sel berkembang dimatikan dengan cara dipisahkan dalam penanganan air pada suhu 60 °C selama 25 menit. Selanjutnya digedih dengan media yang sudah disaring dan dihidupkan beku dan sebagian lagi segera digunakan.

Untuk dapat digunakan dalam penelitian, pada setiap perlakuan ke dalam biomassa ditambahkan lagi aquades bebas ion dengan volume tertentu. Suspen di pereplis selanjutnya diubah agar terabsorbsi dengan spektrofotometer UV-Vis pada parabola gelombang (λ) 600 nm, sebagai dasar pengambilan volume sesuai dengan berat keringnya.

Dua puluh lima mililit er larutan yang mengandung 40 mg Pffl dan 40 mg Zn/l itubat dari larutan induk, pH larutan diatur 6,5 dengan menggunakan larutan acetic acid atau NH4OH. Kemudian dicampur dengan 41,3 mg biomassa yang masih baru dipopiri dalam tabung ergerener 100 ml, selanjutnya dihidup dan didigoy dalam inkubator berputar selama 45 menit. Suspensi anhidit dari perlakuan di atas selanjutnya dipisahkan dengan cara diperedakan setiap 5 menit kemudian kecepatan 4000 rpm selama 20 menit. Larutan yang tersisa ditentukan konsentrasi logam timbal dan seng secara spektrofotometri dengan spesific absorban atom (AAS), untuk menentukan konsentrasi logam timbal dan seng yang diskrit diserap oleh biomassa atau konsentrasi pada saat sebelum. Perbedaan konsentrasi logam setiap dan sesudah perlakuan merupakan jumlah ion timbal dan atau seng yang tersisa diserab biomassa atau konsentrasi pada saat sebelum.


Jasmidi, Eko Sugiharto, Mudjimin
kation dengan tingkat pembentukan kompleks tidak setaulah berbanding luru. Interaksi antara ion logam dengan ligandapat ditinjau dari perbandingan keasaman. Secara umum kation yang bersifat asam kuat akan berinteraksi kuat dengan ligan yang bersifat asam kuat, sebaliknya kation yang bersifat asam lemah akan berinteraksi kuat dengan ligan yang bersifat asam lemah. Ion timbal bersifat asam lemah sedang ion seng bersifat ion antara[7], dengan demikan Pb⁺⁺ akan berinteraksi lebih kuat dengan ligan asam lemah yang terdapat dalam dinding sel biomassae seperti gugus –SH, CN⁻ dan ligan asam lemah lainnya, dengan demikan interaksi terhadap Pb⁺⁺ lebih kuat dibanding Zn²⁺.

Berdasarkan pemahaman di atas dapat dipahami mengapa ion timbal lebih banyak diserap oleh biomassae S. cerevisiae dibanding ion seng. Hal ini sesuai dengan penelitian Mahan, disk (1989), pada penyerapan beberapa logam berat oleh Chlorella pyrenoidosa ditemukan alatitas relatif untuk setiap elemen menurun dengan urutn Pb>Fe>Cu>Co>Zn>Mn>Mo>Sn>Ni>U>Sb>As >Co pada konsentrasi 4 mg/l.

KESIMPULAN

1. Lama dan kondisi penyimpanan biomassae mempengaruhi serapan timbal dan seng oleh S. cerevisiae. Penyimpanan biomassae 1 minggu pada suhu kamar menambahkan serapan timbal dan seng, tidak menyebabkan serapan timbal dan seng menurun.

2. Penyimpanan biomassae di pendingin beku sampai 2 minggu menyebabkan serapan timbal dan seng, sedang serapan seng relatif stabil, penyimpanan lebih lama menyebabkan serapan timbal dan seng menurun.

3. Pada semua kondisi, serapan timbal lebih besar dibanding serapan seng oleh biomassae S. cerevisiae.

DAFTAR PUSTAKA


Gambar 1. Pengaruh lama dan kondisi penyimpanan biomassae terhadap serapan timbal oleh S. cerevisiae (untuk 25 mL larutan, konsentrasi timbal 40 mg/L, konsentrasi seng 40 mg/L; berat biomassae 41.3 mg; pH 6.5; waktu kontak 45 menit)

Gambar 2. Pengaruh lama dan kondisi penyimpanan biomassae terhadap serapan seng oleh S. cerevisiae (untuk 25 mL larutan; konsentrasi timbal 40 mg/L; konsentrasi seng 40 mg/L; berat biomassae 41.3 mg; pH 6.5; waktu kontak 45 menit)

Gambar 3. Pengaruh lama dan kondisi penyimpanan biomassae terhadap serapan timbal dan seng oleh S. cerevisiae (untuk 25 mL larutan; konsentrasi timbal 40 mg/L; konsentrasi seng 40 mg/L; berat biomassae 41.3 mg; pH 6.5; waktu kontak 45 menit)