THE BUFFALO PARCHMENT HIDE PROPERTIES AT 12 WEEKS STORAGE AT DIFFERENT HUMIDITY AND TEMPERATURE

ABSTRACT

The aims of this experiment were to seek 1) the changes in the parchment hide properties of mature male buffalo stored at different humidity and temperature for 12 weeks and 2) stage of humidity and temperature in which the parchment hide properties were still unchanged. Six hides of mature male buffalo were used in this experiment. Eight samples were taken from each back part (butt) of hide, hence the total samples was 48 samples. Twenty-four samples from the left butt were treated in different humidity namely low, moderate and high and stored at 25°C ± 2°C and the other twenty-four from the right butt were stored at 30°C ± 2°C. After 12 weeks of storage, all samples were analysed for their capacity of water absorption and evaporation, bacterial number, pH and chemical composition and physical strength of the parchment hide. The results showed that the treatments did not change significantly on the properties, physical strength and chemical composition except at high humidity of the buffalo parchment hide.

(Key word: Buffalo Hide, Parchment, Storage.)
Pendahuluan

Tujuan penelitian ini yaitu untuk mengetahui:
1. Kondisi lingkungan penyimpanan, apakah berpengaruh terhadap sifat-sifat fisik maupun kimia kulit perkamen 7 (dalam kondisi lingkungan yang bagaimana sifat-sifat kulit perkamen masih dapat dipertahankan.

Sebagai landasan teori dan prinsip-prinsip dalam penelitian ini antara lain:
c

Hipotesis yang dijelaskan pada penelitian ini:
(1) keadaan kulit perkamen berkorelasi erat dengan kondugana zat-zat kimia, (2) penyimpanan pada suhu sampai 30°C dengan kelembaban rendah dan sedang, sifat-sifat dan mutu kulit masih dapat dipertahankan.

Materi dan Metode

Demikan pula pada kelembaban sedang (RH 65 ± 5%) dilakukan dengan larutan asam sufah 18-24% dan pada kelembaban tinggi (RH 85 ± 5%) dengan larutan asam sufah 2-4% (Winston dan Bates, 1960). Penyimpanan dilakukan dengan menaruh potongan kulit perkamen pada rak kayu yang berjarak satu dengan yang lain 2 cm. Suatu dan kelembaban selalu dikontrol (dapat dilakukan pada hidrometer dan termometer yang dipasang di sampai suhu), dengan membubuh tombol AC dan menghubungkan kadar larutan asam sufah. Setelah ditand producer 3 bulan (12 minggu) dilakukan pengujian, conteh uji. Countoh uji dilakukan satu per satu dan diuji jumlah bakteri, kadar zat-zat kimia (Horwitz et al., 1975) penyempurna dan pengapau air, dan kekuatan fisik kulit (Anonim, 1969, 1969a, 1977b, dan 1977c).
Hubungan antara kekuatan fisik-bisik perkenaan karenai jantung dengan kandungan zat-zat kimia di dalamnya dihubungkan dengan persentase garis regresi dan terletar pada Tabel 1. Kekuatan ukur kultu perkenaan berkaitan dengan kandungan kadar protein fisik (64,21%), dengan tebal fibril kolagen (13,79%). Protein fibril dominasi oleh serat serabut kolagen (> 98%). Untuk mengontrol serabut dibutuhkan kekuatan yang tinggi (Rodd, 1978), demikian pula fibril kolagen meningkatkan kekuatan serabut kultu (Swatland, 1984). Peran kontrakturnya juga berkorelasi, yaitu dengan sudut jatuh (63,23%) dan kadar lemak (4,77%). Lebih konsisten dengan jumlah mensementrakan tinggi bahan baku, selanjutnya kadar lemak, yaitu seluruh lemak dan serabut serabut kolagen meningkatkan lemak dan tidaknya kultu (Kangay, 1977). Sungguh kualitas juga berkorelasi, yaitu dengan diametar serabut kolagen (53,19%), dan penguruh nafsu/mengurangi yaitu kadar protein globular (71,80%). Serat kultu pada kulit diomogene oleh banyak seratkan dan diminat serabut kolagen, -diameter makin besar-suhu kerut makin tinggi (Gros, 1962). Maling tingkat kadar protein globular, makin rendah kadar protein fibril yang abi, menurun atau menurut suhu kerut (Swatland, 1984; Roddy, 1978). Kekuatan berkoros cle dengan tebal kulit (61,55%) dan kadar air (mengurangi kekuatan) sebesar 29,45%. Kebabat dan kadar air sangat berpengaruh terhadap kekuatan kultu, makin tebal dan kadar air makin rendah-kekuatan makin tinggi (Kangay, 1977).

Penelitian pengaturan pengaturan air dan hubungan antara waktu dengan penanganan pengaturan air yang dinyatakan dalam garis regresi terletar pada Tabel 2 dan 3. Pengaturan air terjadi pada penyetarapan kolaborasi rendah dan keluaran rendah pada suhu 30 ± 2°C. Pada keluaran rendah dan suhu relatif tinggi terjadi pengaturan terus-menerus pada air bebas. Dengan keluaran rendah, air menjadi konsumsi masyarakat, serta waktu lamanya penyetarapan berpengaruh pada serat kultu. Selain penyetarapan terjadi pertumbuhan total bisik dan makin baik pada penyetarapan suhu manapun keluaran tertentu Tabel 4. Penyetarapan selama 12

mengingat tidak berbeda nyata terhadap total bisik pada keluaran rendah dan sebanyak dengan suhu 30 ± 2°C. Terjadi perbedaan sangat menyebabkan pada penyetarapan dengan keluaran tinggi, total bisik makin polosan juta. Pada keluaran tingkat terjadi perpengaran air, kadar air makin tinggi dan perpengaran bisik akan lebat baik. Keluaran makin tinggi mula mula 12 mungkin disimpan menyebabkan pH makin turun, sejatinya kenaikan total bisik. Total bisik makin yang mungkin menyebabkan peraturan zat-zat kimia dalam kulit makin besar teraturan peraturan lemak, protein dan fermentasi carbhidrat/sulat, serta peraturan pH.

Penyetarapan pada suhu rendah dan sebanyak sampai suhu 30 ± 2°C selalu fisik/kekuatan kulit perkenaan karenai jantung dawen bebas mengalami peraturan secara nyata. Terlihat demikian juga pada kadar zat-zat kimianya, sehingga terdapat dibaliknya adanya korelasi kekuatan fisik dengan zat-zat kimia dalam kulit (Tabel 1) juga terlebih pada peraturan kekuatan fisik ini.

Kesimpulan

Terdapat hubungan antara kekuatan fisik-bisik perkenaan karenai jantung dengan kadar zat-zat kimia (protein fibril dan globular, lemak, serta air) dan struktur jaringan (diameter fibril di serabut kolagen). Penyetarapan dalam keluaran rendah dan sebanyak pada suhu sampai 30 ± 2°C menyebabkan

...
TABEL 1. PERSAMAAN GARIS REGRESI GANDA KEKUATAN FISIK KULIT PERKAMEN KERBAU DEWASA DENGAN KADAR ZAT-ZAT KIMIA SERTA STRUKTUR JARINGANNYA

<table>
<thead>
<tr>
<th>Kekuatan fisik</th>
<th>Persamaan garis regresi ganda</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kekuatan tarik</td>
<td>Ykt = 304,044 + 4,81XH + 0,93Xs</td>
<td>0,78</td>
<td>0,005</td>
</tr>
<tr>
<td>% kembali</td>
<td>Ykm = 2,38 + 0,49XH + 0,05XM</td>
<td>0,68</td>
<td>0,018</td>
</tr>
<tr>
<td>Susu kering</td>
<td>Yka = 71,13 + 1,33XH - 0,80XM</td>
<td>0,71</td>
<td>0,013</td>
</tr>
<tr>
<td>Kekerasan</td>
<td>Yka = 0,33 + 1,33Xs - 0,03XM</td>
<td>0,97</td>
<td>0,00</td>
</tr>
</tbody>
</table>

*H = kadar protein fibro; B = diametre fibril kolagen; t = waktu jatuh; m = additif berbentuk yang muncul dengan cacing berbentuk semut yang lin; k = kadar tertentu; s = diameter semut kolagen; pp = kadar protein globular; Ka = tabur krit; dan se = kadar air.

TABEL 2. RATA-RATA PENYERAPAN/PENGUAPAN AIR SELAMA 12 MINGGU PENYIMPANAN PADA SUHU DAN KELEMBABAAN BERBEDA

<table>
<thead>
<tr>
<th>Kelembaban</th>
<th>Rendah</th>
<th>Sedang</th>
<th>Tinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu/C</td>
<td>20 ± 2 30 ± 2</td>
<td>20 ± 2 30 ± 2</td>
<td>20 ± 2 30 ± 2</td>
</tr>
<tr>
<td>Penyerapan/Penguapan air</td>
<td>-0,90 -3,98</td>
<td>2,12 -2,72</td>
<td>20,93 9,22</td>
</tr>
</tbody>
</table>

TABEL 3. GARIS REGRESI PENYERAPAN/PENGUAPAN AIR SELAMA 12 MINGGU PENYIMPANAN PADA SUHU DAN KELEMBABAAN BERBEDA

<table>
<thead>
<tr>
<th>Kelembaban</th>
<th>Suhu (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendah</td>
<td>20 ± 2°; R dan P</td>
</tr>
<tr>
<td>Sedang</td>
<td>30 ± 2°; R dan P</td>
</tr>
<tr>
<td>Tinggi</td>
<td>30 ± 2°; R dan P</td>
</tr>
</tbody>
</table>

| Rendah | Yr = -0,83 - 0,13 Xm
(R = 0,90, P < 0,01) |
|---------|---|
| Sedang | Ys = 1,67 + 0,07 Xm
(R = 0,81, P < 0,01) |
| Tinggi | Yt = 17,76 + 0,79 Xm
(R = 0,61, P < 0,01) |

| Yr = -2,97 -0,15Xm
(R = 0,83, P < 0,01) |
| Ys = -2,15 -0,99Xm
(R = 0,74, P < 0,01) |
| Yt = 7,12 + 0,32Xm
(R = 0,70, P < 0,01) |
TABEL 4. JUMLAH BAKTERI (x 1000), DAN pH KULIT PERKAMEN KERBAU SELAMA PENYIMPANAN DALAM SUHU DAN KELEMBABAN BERBEDA

<table>
<thead>
<tr>
<th>Kelembaban dan suhu</th>
<th>Total bakteri</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renah, 20 ± 2°C</td>
<td>335 ± 24</td>
<td>6.68 ± 0.02</td>
</tr>
<tr>
<td>Renah, 30 ± 2°C</td>
<td>345 ± 20</td>
<td>6.70 ± 0.04</td>
</tr>
<tr>
<td>Sedang, 20 ± 2°C</td>
<td>345 ± 6</td>
<td>6.48 ± 0.02</td>
</tr>
<tr>
<td>Sedang, 30 ± 2°C</td>
<td>362 ± 14</td>
<td>6.52 ± 0.04</td>
</tr>
<tr>
<td>Tinggi, 20 ± 2°C</td>
<td>119 X 100% ± 164</td>
<td>6.03 ± 0.04</td>
</tr>
<tr>
<td>Tinggi, 30 ± 2°C</td>
<td>122 X 100% ± 82</td>
<td>6.12 ± 0.02</td>
</tr>
</tbody>
</table>

Nilai dalam rata-rata yang berbeda menunjukkan perbedaan secara nyata pada P < 0.01

TABEL 5. KADAR PROTEIN FIBRIS, PROTEIN GLOBULAR, LEMAK, ABI DAN AIR KULIT PERKAMEN KERBAU SELAMA PENYIMPANAN 12 MINGGU PADA KELEMBABAN DAN SUHU BERBEDA

<table>
<thead>
<tr>
<th>Kelembaban dan suhu</th>
<th>Kadar (%)</th>
<th>protein fibris¹</th>
<th>protein globular¹</th>
<th>lemak¹</th>
<th>abu¹</th>
<th>air²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renah, 20 ± 2°C</td>
<td>96,57% ± 1,18</td>
<td>7,13± 1,0</td>
<td>80,73% ± 0,04</td>
<td>0,80% ± 0,04</td>
<td>20,00% ± 0,95</td>
<td></td>
</tr>
<tr>
<td>Renah, 30 ± 2°C</td>
<td>90,19% ± 2,19</td>
<td>7,66± 2,03</td>
<td>0,72% ± 0,05</td>
<td>0,84% ± 0,05</td>
<td>15,00% ± 0,94</td>
<td></td>
</tr>
<tr>
<td>Sedang, 20 ± 2°C</td>
<td>91,02% ± 1,97</td>
<td>7,11± 1,38</td>
<td>0,73% ± 0,02</td>
<td>0,82% ± 0,07</td>
<td>24,57% ± 1,33</td>
<td></td>
</tr>
<tr>
<td>Sedang, 30 ± 2°C</td>
<td>90,89% ± 1,59</td>
<td>7,24± 1,42</td>
<td>0,70% ± 0,06</td>
<td>0,83% ± 0,08</td>
<td>16,61% ± 1,26</td>
<td></td>
</tr>
<tr>
<td>Tinggi, 20 ± 2°C</td>
<td>86,08% ± 0,92</td>
<td>6,53± 0,62</td>
<td>0,65% ± 0,05</td>
<td>0,73% ± 0,06</td>
<td>44,16% ± 0,64</td>
<td></td>
</tr>
<tr>
<td>Tinggi, 30 ± 2°C</td>
<td>86,11% ± 0,82</td>
<td>6,57± 0,52</td>
<td>0,66% ± 0,04</td>
<td>0,74% ± 0,05</td>
<td>31,61% ± 0,59</td>
<td></td>
</tr>
</tbody>
</table>

Nilai dalam rata-rata yang berbeda menunjukkan perbedaan secara nyata pada P < 0.01

¹) Dihitung berdasarkan berat-besar kering kuit perkamen
²) Dihitung berdasarkan berat-besar kuit perkamen

statis-statistik kekuatan fokus dan kualar net-zat zimia belum mengalami perubahan secara nyata

Daftar Pustaka

<table>
<thead>
<tr>
<th>Kelembaban dan suhu</th>
<th>Kekuatan tanah</th>
<th>Persen kemueluran</th>
<th>Suhu</th>
<th>Kekacauan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendah, 20 ± 2°C</td>
<td>746± 26</td>
<td>25.12± 1.05</td>
<td>81.87± 0.73</td>
<td>1.02± 0.04</td>
</tr>
<tr>
<td>Rendah, 30 ± 2°C</td>
<td>746± 23</td>
<td>24.94± 0.72</td>
<td>81.94± 0.83</td>
<td>1.06± 0.05</td>
</tr>
<tr>
<td>Sedang, 20 ± 2°C</td>
<td>740± 17</td>
<td>26.3± 0.86</td>
<td>80.13± 0.82</td>
<td>0.95± 0.05</td>
</tr>
<tr>
<td>Sedang, 30 ± 2°C</td>
<td>738± 13</td>
<td>26.18± 1.39</td>
<td>80.19± 0.67</td>
<td>0.95± 0.05</td>
</tr>
<tr>
<td>Tinggi, 20 ± 2°C</td>
<td>546± 15</td>
<td>42.72± 1.92</td>
<td>72.93± 0.87</td>
<td>0.72± 0.04</td>
</tr>
<tr>
<td>Tinggi, 30 ± 2°C</td>
<td>525± 15</td>
<td>43.31± 2.04</td>
<td>72.29± 0.85</td>
<td>0.74± 0.05</td>
</tr>
</tbody>
</table>

Nilai dengan superskrip yang berbeda, menunjukkan perbedaan nyata (P < 0.01)