PENGARUH STARTER DAN WAKTU RETENSI TERHADAP PRODUKSI GAS METHAN DARI LIMBAH SAPI PERANAKAN ONGOLE

Purwanto Bauuki

UNTISARI

Penelitian ini bertujuan untuk mengetahui pengaruh penambahan starter dan waktu retensi terhadap produksi gas metan dari limbah sapi peranakan Ongole yang dipelihara pada kondisi pedesaan. Materi yang digunakan dalam penelitian adalah feses sapi Peranakan Ongole (PO) yang diberi bahan pakan dominan jerami padi. Feses dari 10 ekor sapi PO dicampur dengan air untuk mendapatkan substrat dengan kadar bahan kering 8%. Substrat dipisahkan menjadi dua kelompok perlakan dengan 4 tiap kelompok perlakan. Kelompok I (SP I) tanpa penambahan starter dan kelompok II (SP II) dengan penambahan starter 5%. Substrat dimasukkan ke dalam digester diskontinu kapasitas 200 liter sebanyak 4 unit digester untuk setiap perlakuan. Parameter yang diamati meliputi suhu, nitrogen, pH, produksi gas bio/hari dan analisis komposisi gas metan. Penelitian dilaksanakan selama 80 hari waktu retensi. Hasil analisis menunjukkan bahwa kadar bahan kering feses 18,57%, C/N ratio 38,95 suhu lingkungan 26,1 ± 30,3°C, suhu digester 24,9-28,2°C, pH 6-6. Dengan volume substrat 200 liter diperoleh total produksi gas bio pada SP I 751,53 dan SP II 829,68 liter/1 atm./25°C. Produksi gas bio per kg. bahan kering adalah SP I 46,97 dan SP II 51,86 liter/1 atm./25°C. Estimasi produksi gas metan pada SP I 376,53 dan SP II 416,01 liter/1 atm./25°C, untuk volume substrat 200 liter. Uji statistik dengan pola fakorial 2 x 8 menunjukkan bahwa waktu retensi dan penambahan starter berpengaruh terhadap produksi gas bio dan metan dengan perbedaan yang nyata (P<0,05). Ada interaksi antara perlakuan penambahan starter dengan waktu retensi terhadap produksi gas bio. Kesimpulan hasil penelitian menunjuk bahwa penambahan starter 5% pada substrat dapat meningkatkan produksi gas metan sampai waktu retensi hingga 20 hari, sedangkan waktu retensi pada periode waktu 10 hari berpengaruh terhadap produksi gas metan dengan pencah produksi pada waktu retensi 20-30 hari.

(Kata kunci: Starter, Waktu retensi, Produksi gas metan, Limbah sapi PO.)
EFFECT OF STARTER AND RETENTION TIME ON METHANE GAS PRODUCTION OF ONGOLE CROSSBRED CATTLE WASTE

ABSTRACT

The objective of this study was to know the effect of starter and retention time on methane gas production of Ongole crossbred measure under rural condition. Sixteen Ongole crossbred cattle were taken their feces and mixed with water to get substrate with 8% dry matter. Substrates were divided into SP I (without starter) and SP II (with starter 5%). Repeated 4 times per treatment. Results showed dry matter of feces was 18.37%, C/N ratio was 38.95. Environmental temperature was 26.1 - 30.5°C, digester temperature 24.4 - 28.3°C and pH was 6 - 8. During experiment with 80 days of retention time was obtained biogas production of SP I 175.55 and SP II 829.68 liter/1 atom/29°C for 200 liters substrates. Biogas production per 1 kg dry matter of SP I was 46.97 and SP II was 51.80 liters/1 atom/29°C. Methane gas production of SP I 376.53 and SP II 415.01 liters/1 atom/29°C for 200 liters substrates. There was significant difference (P<0.05) in methane gas production because of starter and retention time. It was concluded that starter 5% could increase methane gas production up to day 20 whereas retention time on the day 10 affected methane gas production with rear methane production on the day 20 - 30.

(Key words: Starter, Retention time, Methane gas production, Ongole feces.)

Pendahuluan

Dalam strategi pengembangan number energi konvensional, peranan sapi potong sebagai penghasil energi biomas yang potential tidak dapat diabaikan. Hal ini disebabkan karena populasi sapi potong di Indonesia cukup besar dan sebagian besar pemiliknya berada di tangan petani ternak.

Sampai saat ini aplikasi teknologi pemanfaatan gas bio dari limbah ternak untuk bahan bakar rumah tangga masih terbatas pada konomi sapi perah skala perusahaan, sedangkan pemanfaatan gas bio dari sapi potong belum banyak dilakukan. Oleh karena itu penelitian yang berorientasi pada pengembangan sumber energi non konvensional dari limbah sapi potong perlu mendapat perlhatan.

Gas metana merupakan salah satu komponen penyusun gas bio yang dapat dibakar (54-70%) di samping CO₂ (27-45%) dan gas lain dalam proses lain yang kecil (Harthap et al., 1978). Gas bio merupakan sumber energi non konvensional, yang dibahas dalam digester (unit pencegah) dengaaa mikroorganisme peranan bakteri. Proses fermentasi dan aerobe untuk menghasilkan gas bio, berlangsung dalam tiga tahap. Pada tahap I, sedikit fermentasi organisme yang fakultatif dan aerobe bekerja pada beberapa organik yang polimerik, yang secara hidrolik enzimatik diubah menjadi monomer-monomer yang larut. Pada tahap II monomer yang larut ini akan dirubah menjadi asam organik, yakni asam acetat, asam propionat dan asam butirat. Asam organik ini merupakan substrat bagi proses

Materi dan Metode

Penelitian menggunakan 8 bahi unit peaceurus (digestor) kapasitas 200 liter tiap diskonsumsi dan 8 unit gas holder (penampung gas) dengan peralatan tambahan yang digunakan adalah manometer, termometer, pH meter, injektor yang dimodifikasi untuk pengambilan gas bio, veniject dan gas chromatograph. Limbah sesi sapi PO untuk pembuatan substrat diperoleh dari 16 ekor sapi PO dewasa pada kondisi pemeliharaan di pada penelitian, ditemukan bahwa kualitas yang didominasi oleh jenis rumput.

Feses sugor yang diambil dari 16 ekor sapi PO dinilai kadar bahan keringnya. Berasalnya data bahan kering feses tersebut kemudian feses segera ditambah air untuk mengupapkan substrat dengan kadar bahan kering 8%. Analisis dilakukan pula terhadap C/N ratio feses. Substrat yang telah tersedia (BK = 8%) kemudian dimasukkan dalam 8 unit digester tipe pengisian cukup (diskontinya) yang terbuat dari drumi oli bekas yang telah dimodifikasi. Digester semakin 8 unit dipisahkan menjadi 2 kelompok perlakuan (kontrol/SP 1 vs penambahan starter 5% dari volume substrat/SP 2).

Starter semula bataan diperoleh dari lerupur aktif (sludge) sisa proses pembuatan gas bio dari hasil penelitian sebelumnya yang juga menggunakan limbah sapi PO. Aktivitas dan perkembangan bakteria pada starter, dipaparkan dengan penambahan air gua dan kemudian dipotensiasi secara mikroskopis. Parameter yang diamati meliputi produksi gas bio per hari yang kemudian diperhitungkan untuk setiap periode waktu retimi 10 hari, pH substrat, suhu digestor, suhu lingkungan dan komposisi gas metana. Waktu penelitian selama 80 hari.

Analisis data dengan menggunakan rancangan percobaan CRD pola faktorial 2 x 8 dengan perlakuan penambahan starter 5% dari volume substrat dan waktu retimi untuk setiap periode 10 hari, selama 80 hari.

Hasil dan Pembahasan

Hasil penelitian pada Tabel 1 menunjukkan bahwa produksi feses per ekor per hari dari sapi PO rata-rata 10,2 kg, kadar bahan kering 18,3% dari C/N ratio 38,95.
Tabel 1. Produksi Feeses, Kadar BK, C/N Ratio, Suhu Lingkungan, Suhu Digester dan pH Selama Penelitian

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produksi Feeses per ekor per hari (kg)</td>
<td>10,2</td>
<td>10,2</td>
</tr>
<tr>
<td>Kadar BK (%)</td>
<td>18,57</td>
<td>18,57</td>
</tr>
<tr>
<td>Kadar bahan kering substrat (%)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Kadar suhu lingkungan (°C)</td>
<td>26,1 - 30,5</td>
<td>26,1 - 30,5</td>
</tr>
<tr>
<td>Kadar suhu digester (°C)</td>
<td>25,0 - 28,3</td>
<td>25,0 - 28,3</td>
</tr>
<tr>
<td>pH</td>
<td>6 - 8</td>
<td>6 - 8</td>
</tr>
<tr>
<td>C/N ratio²</td>
<td>38,95</td>
<td>38,95</td>
</tr>
</tbody>
</table>

1 Sumber: Lab. Bina Nutrisi Dan Makanan Terbaik Fak. Penerapan UGM.
2 Sumber: Lab. Bina Tekhik Fak. Peremajaan UGM.

Tingginya C/N ratio (38,95) yang melebihi C/N ratio ideal (25-30) untuk produkasi gas bio pada seses sapi konsum较差ik disebabkan karena bahan pakan sapi didominasi oleh jerami pada dan sedikit hijauan/konsentrat, sedangkan suhu digester (25-28,4°C) sedikit berbeda di bawah suhu lingkungan (26,1-30,5°C), maka suhu yang ideal (30-35°C) untuk proses fermentasi. Untuk mengoptimalkan efek dari perlakuan starter, maka kondisi substrat dan konstruksi digester diuasahakan relatif sama.

Pengaruh penambahan starter dan waktunya terhadap produkasi gas bio dan gas methan. Dari Tabel 2 dijelaskan bahwa total produkasi gas bio untuk 500 liter substrat pada perlakuan SP 1 (kontrol) sebesar 751,55 liter/l atn/29°C lebih rendah dibandingkan pada perlakuan penambahan starter 5% (SP II), yaitu 829,68 liter/ atn/29°C dengan perbedaan yang nyata (P<0,05).

Dari Tabel 2 dan 3 serta dari Gambar 1 dan 2 tampak jelas bahwa, penambahan starter 5% ternyata berpengaruh nyata terhadap produkasi gas bio pada semua retensi sampai 20 hari. Sesudah hari ke 20, justru produkasi gas bio pada perlakuan SP 1 (starter 5%) lebih rendah dari kontrol (SP I). Sesudah umur retensi 30 hari produkasi gas bio antara SP I dan SP II tidak jauh berbeda.

Pada perlakuan SP I dan SP II kualitas dan jumlah bahan kering substrat pada prinsipnya sama, tetapi karena pada substrat SP II diambahkan starter, maka sebenarnya mengandung bakteria yang sudah diakulturasi, maka aktivitas digesti akan lebih baik, sehingga produk SP II lebih cepat dibanding SP I. Pada SP I proses digesti akan lebih lambat, dan dalam waktu yang telah dipilih pada daya SP II (Tabel 2 dan 3, Gambar 1 dan 2) (Bell, et al., 1973, Suriawinata dan Sastramuljana, 1980).
TABEL 2. HUBUNGAN WAKTU RETENSI PADA SETIAP PERIODE 10 HARI DENGAN PRODUKSI GAS BIO (LITER/ATM./25°C) DAN PENAMBAHAN STARTER 5% (SUBSTRAT 200 LITER)

<table>
<thead>
<tr>
<th>Waktu retensi</th>
<th>Starter</th>
<th>Rorata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>1.</td>
<td>111,03</td>
<td>187,58</td>
</tr>
<tr>
<td>2.</td>
<td>195,56</td>
<td>224,62</td>
</tr>
<tr>
<td>3.</td>
<td>199,80</td>
<td>155,13</td>
</tr>
<tr>
<td>4.</td>
<td>83,39</td>
<td>89,98</td>
</tr>
<tr>
<td>5.</td>
<td>54,94</td>
<td>45,80</td>
</tr>
<tr>
<td>6.</td>
<td>44,24</td>
<td>45,90</td>
</tr>
<tr>
<td>7.</td>
<td>34,62</td>
<td>34,00</td>
</tr>
<tr>
<td>8.</td>
<td>27,97</td>
<td>28,46</td>
</tr>
<tr>
<td>Total produksi</td>
<td>751,55*</td>
<td>829,68*</td>
</tr>
</tbody>
</table>

Note: Superskrip yang berbunyi pada tanda titik produksi gas biologi kelima yang sama dan jumlah produksi gas biologi kelima yang sama menunjukkan perbedaan yang nyata (P<0,05).

TABEL 3. HUBUNGAN WAKTU RETENSI PADA SETIAP 10 HARI DENGAN TOTAL PRODUKSI GAS BIO KUMULATIF (LITER/1 ATM./25°C)

<table>
<thead>
<tr>
<th>Waktu retensi 10 hari ke:</th>
<th>Starter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>1.</td>
<td>111,03</td>
</tr>
<tr>
<td>2.</td>
<td>306,59</td>
</tr>
<tr>
<td>3.</td>
<td>506,39</td>
</tr>
<tr>
<td>4.</td>
<td>589,78</td>
</tr>
<tr>
<td>5.</td>
<td>644,72</td>
</tr>
<tr>
<td>6.</td>
<td>688,96</td>
</tr>
<tr>
<td>7.</td>
<td>723,58</td>
</tr>
<tr>
<td>8.</td>
<td>751,55</td>
</tr>
</tbody>
</table>

147
Gambar 1. Grafik hubungan waktu retensi setiap periode 10 hari dengan produksi gas bio (liter/1 atm/29°C).

Gambar 2. Grafik hubungan waktu retensi setiap periode 10 hari terhadap produksi gas bio secara kumulatif (liter/1 atm/29°C).
<table>
<thead>
<tr>
<th>Startar</th>
<th>0%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>komposisi gas metahan (%)</td>
<td>50,10</td>
<td>50,02</td>
</tr>
<tr>
<td>komposisi gas CO, dan gas lain (%)</td>
<td>49,90</td>
<td>49,98</td>
</tr>
<tr>
<td>produksi gas bio pada 200 liter substrat (l)</td>
<td>731,53*</td>
<td>829,68*</td>
</tr>
<tr>
<td>produksi gas metahan pada 200 kg substrat (l)</td>
<td>370,52*</td>
<td>415,09*</td>
</tr>
<tr>
<td>produksi gas bio/1 kg bahan kering</td>
<td>46,97*</td>
<td>51,80*</td>
</tr>
<tr>
<td>produksi gas = metahan/1 kg bahan kering</td>
<td>234,5*</td>
<td>23,54*</td>
</tr>
</tbody>
</table>

superskrip yang berbeda dari warna rata-rata haris yang sama menunjukkan perbedaan yang nyata (P<0,05).

Seusah umur retensi hari ke 31 produk gas bio pada kontrol (SP I) dan perlakuan startar (SP II) tidak jauh berbeda, tetapi pada produkasi gas bio hari ke 20 - 30 terbanyak pada SP I (194,8 liter/atm/20°C) lebih tinggi dibanding pada SP II (155,13 liter/atm/20°C). Hal ini diduga disebabkan karena menurunnya persediaan bahan kering substrat dari SP II yang telah mengalami proses fermentasi sampai hari ke 20. Sementara persediaan bahan kering seterusnya pada SP I masih cukup banyak dan melambat substrat pada SP II.

Dari Tabel 2, 3 dan gambar 1, 2 dapat dikeluarkan bahwa produk gas bio mencapai puncak pada umur retensi hari ke 20 - 30, sehingga dalam pembatasan digester kontinu (unit aplikasi), ketebalan hari ke 20 -30 tersebut dapat digunakan sebagai faktor perkalian dalam menentukan volume isian efisiensi.

Hasil analisis statistik menunjukkan adanya interaksi antara penambahan startar 5% dengan waktu retensi setiap periode 10 hari terhadap produkasi gas bio, terutama pada waktu retensi sejumlah hari ke 20. Hubungan produk gas bio dengan waktu retensi pada Tabel 2 dan gambar 1 menunjukkan bahwa pada setiap periode waktu retensi 10 hari dari periode ke 1 s/d 8 menunjukkan perubahan yang nyata, kemudian pada periode ke 3 dan 4 atau dari umur retensi hari ke 20 - 40. Grafik tersebut menggambarkan bahwa aktivitas bakteria sangat bergantung pada persediaan bahan kering substrat dan kondisi abiotik dari substrat. Pada Tabel 4 dapat dianumsikan bahwa produk gas metahan pada SP II lebih tinggi dibandingkan SP I dengan perbandian yang nyata, demikian pada terhadap produkasi gas metahan dalam 1 kg bahan kering.

Kesimpulan
Daftar Pustaka

KAJIAN HUBUNGAN ANTARA FAKTOR SOSIAL EKONOMI DENGAN PENDAPATAN USAHA PEMELIHARAAN KAMBING DI KABUPATEN GUNUNG KIDUL

Sudi Nurmini

INTISARI

Pendataan ini dilakukan untuk mengkaji hubungan beberapa faktor sosial ekonomi dengan pendapatan peternak pada usaha pemeliharaan kambing. Metode survei digunakan dalam pendataan ini. Survei dilaksanakan di Kecamatan Patuk, Semin, Ngawer, Wonosari, Playen dan Karangmojo, Kabupaten Gunung Kidul, Daerah Istimewa Yogyakarta. Sebanyak 100 peternak kambing digunakan sebagai responden. Regresi berganda model linear digunakan untuk mengalihkan faktor-faktor sosial ekonomi yang diduga berpengaruh terhadap pendapatan dari usaha pemeliharaan kambing. Identifikasi menunjukkan bahwa jumlah anggota keluarga, lama pemeliharaan, jumlah hewan yang dimiliki, kondisi pemeliharaan, dan biaya pemeliharaan kambing/ST/th secara bersama-sama berpengaruh sangat nyata terhadap pendapatan usahatani ternak kambing/ST/th (P<0,01) dengan koefisien determinasi (R^2) = 0,41722. Peningkatan pendapatan usaha pemeliharaan kambing/ST/th secara nyata dipengaruhi oleh peningkatan kontribusi pendapatan usahatani ternak kambing terhadap pendapatan total usahatani/th dan penurunan pemilikan kambing (P<0,01).

(Satu kunci: Faktor Sosial Ekonomi, Pendapatan Peternak Kambing.)

1 Fakultas Peternakan UGM, Yogyakarta 55281

Boletin Peternakan 18: 151-156, 1994