ABSTRAK

One of parameters on bearing capacity of subgrade for pavement designs is R-Value. Bearing capacity of soil could be improved by soil stabilization method. Lime modification could be used prior to soil stabilization. Aim of the research is to investigate the effectiveness of lime modification on R-Value of clay and cement stabilized mud. The R-Value tests were conducted on clay and cement stabilized mud using 6%, 8% and 10% of lime. The clay and cement stabilized mud were used in the study. The R-Value of clay and cement stabilized mud was used as a reference in the empty flat of the mixture with the same weight of 7%.

PENDAHULUAN

Penelitian ini bertujuan untuk mengetahui efektivitas penggunaan kapur sebagai bahan prastabilisasi pada stabilisasi lempung menggunakan semen (dalam penelitian ini disebut dengan lempung-semester), ditinjau dari pengaruhnya terhadap R-value lempung-semester yang dirawat selama 28 hari.

KAJIAN PUSTAKA DAN LANDASAN TEORI

Tanah Lempong

Mineral lempung yang biasa ditemui di alam ialah kasilitone, illite, dan montmorillonite (Bowles, 1984). Untuk ketiga mineral tersebut, Mitchell (1993) memberikan nilai specific gravity (Gs) sebagai berikut:

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Mineral</th>
<th>Specific Gravity (Gs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kasilitone</td>
<td>2.60 - 2.68</td>
</tr>
<tr>
<td>2.</td>
<td>Illite</td>
<td>2.6 - 3.0</td>
</tr>
<tr>
<td>3.</td>
<td>Montmorillonite</td>
<td>2.35 - 2.7</td>
</tr>
</tbody>
</table>

Sumber: Mitchell, 1993

Tapi kepada jenis mineral lempung mempunyai nilai aktivitas sendiri-sendiri. Aktivitas suatu tanah diperoleh dengan perhitungan sebagai berikut:

\[A = \frac{\% \text{ Lempung}}{\text{IP}} \]

dengan:

- A: Aktivitas
- IP: Index Pelatitas
- Lempung: persen fraksi lempung

*) Ir. Suryo Hapsoro Tri Utomo, Ph.D. : Dosen Jurusan Teknik Syal Fakultas Teknik UGM dan dosen Magister Sistem dan Teknik Transportasi Program Pascasarjana UGM.

30 MEDIA TEKNIK NO. 2 Tahun XXV Edisi Mei 2003 No. ISSN 0216-3012
Stabilisasi

Stabilisasi tanah memerlukan Ingles dan Metcalf (1972) ialah usaha untuk memperbaiki sifat-sifat tanah asli agar tanah tersebut sesuai atau memenuhi syarat untuk digunakan sesuai fungsiya.

Terdapat dua jenis stabilisasi tanah yaitu stabilisasi mekanis dan stabilisasi kimia. Stabilisasi kimia bertujuan untuk menambah kekuatan atau kuat dukung tanah dengan jalan menggantungkan dan atau menghiringkan sifat-sifat teknis tanah yang kurang menguntungkan jika tanah asli dimanfaatkan dengan jalan menambah zat-zat kimit tertentu pada tanah tersebut (Soekoto, 1972). Salah satu bahan yang dapat digunakan adalah semen.

Prastabilisasi dengan kapur

Ingles dan Metcalf (1972) menyatakan bahwa pada pekerjaan stabilisasi tanah dengan semen, kapur dapat digunakan untuk pekerjaan pre-treatment atau lime modification (prastabilisasi dengan kapur). Selanjutnya dinyatakan pula bahwa dalam prastabilisasi dengan kapur, kapur digunakan untuk membuat tanah menjadi lepas (pulverize) sehingga menambahkan dalam pelaksanaan.

Semen

Semen merupakan bahan stabilisasi yang banyak mengingat bahwa kemampuan mengeras dan mengikat partikel sangat bermanfaat bagi usaha mendapatkan atau tansha yang kokoh dan tahan terhadap deformasi (Soekoto, 1984). Menurut Tjokroudinalyo (1996) di Indonesia terdapat lima tipe semen, yaitu:

a) Tipe I : digunakan untuk penggunaan umum tanpa menuntut persyaratan khusus,
b) Tipe II : digunakan untuk penggunaan yang tahan terhadap sulfat dan panas hidrasi sedang,
c) Tipe III : digunakan untuk penggunaan yang membutuhkan persyaratan kekuatan awal yang tinggi setelah pengikatan yang terjadi,
d) Tipe IV : digunakan untuk penggunaan yang memerlukan panas hidrasi yang rendah,
e) Tipe V : digunakan untuk penggunaan yang menuntut persyaratan sangat tinggi terhadap sulfat.

Susunan kimia semen yang penting, ialah seperti yang ditunjukkan pada Tabel 3.

Tabel 3. Susunan Kimiawi Kompleks Semen yang Penting

<table>
<thead>
<tr>
<th>No.</th>
<th>Penyusun S למ</th>
<th>Simbol</th>
<th>Kode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tricalcium Silicate</td>
<td>3CaO.SiO₂</td>
<td>C₃S</td>
</tr>
<tr>
<td>2.</td>
<td>Dicalcium Silicate</td>
<td>2CaO.SiO₂</td>
<td>C₂S</td>
</tr>
<tr>
<td>3.</td>
<td>Tricalcium Aluminat</td>
<td>3CaO.Al₂O₃</td>
<td>CA</td>
</tr>
<tr>
<td>4.</td>
<td>Tetracalcium Aluminoferrit</td>
<td>4CaO.Al₂O₃.Fe₂O₃</td>
<td>C₄AF</td>
</tr>
</tbody>
</table>

Sumber: Kreis dan Walker, 1971

Kapur

Kapur yang digunakan untuk stabilisasi tanah dan prastabilisasi tanah ialah kalsium oksida (CaO) dan kalsium hidroksida Ca(OH)₂. Kalsium oksida direbut juga dengan kapur tohor, dan kalsium hidroksida dicenal sebagai kapur padam. Pada prastabilisasi tanah lempung dengan kapur, penggunaan kapur padam ialah antara 1% - 3% terhadap berat kering lempung (Ingles dan Metcalf, 1972).

R-Value

R-Value adalah kepadatan terhadap deformasi pada bahan benda uji, yang ditunjukkan oleh kemampuan 'bahan' benda uji menahan tekanan lateral melalui benda uji dari beban vertikal yang diterapkan dengan alat statimeter (Kreis dan Walker, 1971).

The Asphalt Institute (1997) menyatakan bahwa metode pengujian R-Value adalah pengujian cepat untuk menentukan suatu nilai stabilitas atau kekakuan terhadap deformasi plastis bahan terpadukan dengan alat statimeter. Selanjutnya juga dinyatakan bahwa metode pengujian R-Value tersebut dirancang untuk memperkiraan kinerja tanah asli maupun tanah terstabilisasi yang digunakan untuk subgrade.

Pengujian R-Value dilakukan dengan menggunakan alat Statimeter seperti yang dapat dilihat pada Gambar 1. R-Value diperoleh dari benda uji setinggi 62,2 mm dengan rumus sebagai berikut:

\[
R = 100 - \frac{2.5 \times 160}{D \times Ph} \times 100
\]
CARA PENELITIAN DAN HASIL

Bahan dan Alat

Contoh tanah yang digunakan adalah lempung dari daerah Kasihan Kabupaten Bantul Daerah Istimewa Yogyakarta. Seni rupa yang dipetakan dalam bentuk tipe I dan kapor yang digunakan kapur pada tanah. Tabel 4 memperlihatkan alat-alat yang digunakan.

Tabel 4. Pemakaian dan Alat/Alat yang Digunakan

<table>
<thead>
<tr>
<th>No</th>
<th>Pemakaian</th>
<th>Alat/Alat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distribusi kecepatan</td>
<td>AASHTO T 38</td>
</tr>
<tr>
<td></td>
<td>panikel</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Specific gravity</td>
<td>AASHTO T 100</td>
</tr>
<tr>
<td>3</td>
<td>Karakteristik penamaan</td>
<td>AASHTO T 99</td>
</tr>
<tr>
<td>4</td>
<td>Batu/batubu Arthurberg</td>
<td>AASHTO T 69 dan T 90</td>
</tr>
<tr>
<td>5</td>
<td>R-Value</td>
<td>ρ = 7 190</td>
</tr>
</tbody>
</table>

Peralasan Pengujian

Urutan peralasan pengujian dapat dilihat pada Gambar 3.

Gambar 1. Stasimeter

Apabila benda uji tumbuk setinggi 62,2 mm perlu diadakan kercek dengan rasio R-Value yang dipetakan, menggunkan grafik kercek seperti yang ditunjukkan pada Gambar 2.

Gambar 2. Grafik kercek R-Value

32 MEDIA TEKNIK NO. 2 Tahun XXV Edisi Mei 2003 No. ISSN 0216-5012
Campuran Lampung dan Kapor

Penjadwalan Campuran Lengkap-Semen dengan Prastabilisasi Kapor

Penjadwalan campuran dilakukan dengan pemadatan Proctor Standar, dan diperoleh hasil karakteristik pemadatan berupa kepadatan kering maksimum (ρ_d) dan kadar air optimum (w_o)

Pengujian R-Value

Pengujian R-Value dilakukan pada benda uji lempung-semen yang diprastabilisasi dengan kapor selama 3 hari dan 7 hari, dan dipadatkan dengan pemadatan Proctor Standar, dan hasilseperi yang disajikan pada Tabel 6, Gambar 4 dan Gambar 5.

Tabel 6. Pengaruh Kadar Kapor dan Waktu Prastabilisasi terhadap Batas-batas Atterberg

<table>
<thead>
<tr>
<th>No.</th>
<th>Kadar Kapor (%</th>
<th>Batas Cair</th>
<th>Batas Plastis</th>
<th>Indeks Plastisitas</th>
<th>Batas Cair</th>
<th>Batas Plastis</th>
<th>Indeks Plastisitas</th>
<th>Prastabilisasi 3 hari</th>
<th>Prastabilisasi 7 hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>74</td>
<td>43.6</td>
<td>30.4</td>
<td>1</td>
<td>42.7</td>
<td>28.3</td>
<td>1.54</td>
<td>26.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>73.1</td>
<td>42.9</td>
<td>30.2</td>
<td>2</td>
<td>41.9</td>
<td>28.1</td>
<td>1.38</td>
<td>26.3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>73</td>
<td>43.2</td>
<td>29.8</td>
<td>3</td>
<td>34.4</td>
<td>27.1</td>
<td>1.39</td>
<td>25.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Kadar Semen (%</th>
<th>Prastabilisasi menggunakan kapur selama 3 hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.34 26.5 1.38 27 1.36 26 1.38 26.3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1.37 26.6 1.41 27.2 1.39 25.4 1.41 27.2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1.38 27 1.43 28 1.42 27.2 1.39 25.6</td>
</tr>
</tbody>
</table>

Keterangan: \(\gamma_{	ext{max}} \) dalam \(\text{g/cm}^3 \), \(w_o \) dalam %

<table>
<thead>
<tr>
<th>No.</th>
<th>Kadar Semen (%</th>
<th>Prastabilisasi menggunakan kapur selama 7 hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>1.36 26.5 1.39 26.5 1.41 26.5 1.39 26.5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1.39 26.2 1.42 25.7 1.42 25.5 1.41 26.3</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1.41 25 1.43 24.9 1.41 24.5 1.42 26</td>
</tr>
</tbody>
</table>

Keterangan: \(\gamma_{	ext{max}} \) dalam \(\text{g/cm}^3 \), \(w_o \) dalam %

MEDIA TEKNIK NO. 2 Tahun XXV Edisi Mei 2003 No. ISSN 0216-3012
<table>
<thead>
<tr>
<th>No.</th>
<th>Kadar Semen (%)</th>
<th>Tanpa Prastabilisasi</th>
<th>Prastabilisasi 3 Hari</th>
<th>Prastabilisasi 7 Hari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R-Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 % Kapur</td>
<td>1 % Kapur</td>
<td>2 % Kapur</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>21,8</td>
<td>23,2</td>
<td>22,8</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>23,3</td>
<td>23,3</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>23,9</td>
<td>24,7</td>
<td>21,5</td>
</tr>
</tbody>
</table>

Gambar 4. Grafik R-Value Limpung Asli (Semen 0% dan Kadar Kapur 0%) dan Limpung semen yang Diprastabilisasi Menggunakan Kapur Selama 3 Hari

Gambar 5. Grafik R-Value Limpung Asli (Semen 0% dan Kadar Kapur 0%) dan Limpung semen yang Diprastabilisasi Menggunakan Kapur Selama 7 Hari
Pengaruh Prastabilisasi dengan Kapur terhadap R-Value

Penambahan kapur sebagai prastabilisasi selama 3 hari dan 7 hari menyebabkan permukaan partikel lempung menjadi netral seperti partikel lempung menjadi lepas (pulverized), sehingga sesuatu yang dicampurkan padanya dapat tercampur dengan lebih merata pada permukaan partikel lempung. Prastabilisasi kapur sebagai prastabilisasi terhadap R-Value lempung-semen mencapai hasil terbaik pada kadar kapur 1%, sedangkan penambahan kadar kapur pada lebih dari 1% menunjukkan penurunan R-Value lempung-semen. Penurunan R-Value ini disebabkan karena kapur yang diperlukan untuk membuat permukaan partikel lempung menjadi netral cukup dengan 1% saja, sedangkan apabila lebih dari 1% maka akan terjadi "kelebihan kapur". "Kelebihan kapur" tidak lagi diperlukan untuk membuat permukaan partikel lempung menjadi netral (sehingga partikel lempung menjadi lepas/pulverized) tetapi akan membantu partikel-partikel lempung yang lepas akan diikat oleh kapur menjadi gumpalan-gumpalan lempung, sehingga sesua dengan yang ditambahkan dan dicampurkan pada campuran lempung dengan kadar kapur tidak terlalu pada partikel tanah tetapi menyelimuti "gumpalan" lempung timbunan.

KESIMPULAN DAN SARAN

Kesimpulan

a) Prastabilisasi menggunakan kapur pada cendung membuat lempung menjadi berkurang plastisitasnya,

b) Lempung yang diperlakukan menggunakan kapur atau stabilisasi menggunakan semen dengan kadar semen sebesar 6%, 8%, dan 10% terhadap berat total menyumbang R-Value yang lebih tinggi dibandingkan dengan semen yang digunakan,

c) Prastabilisasi lempung-semen (dengan kadar semen 6%, 8%, dan 10%) menggunakan kapur dengan masa perataan 2 hari memberikan kencenderungan R-Value yang lebih tinggi dibandingkan dengan masa perataan 3 hari,

d) Efektivitas teknik perusahaan kapur padapan sebagai bahan prastabilisasi lempung-semen, ditutup dari R-Value, baik pada prastabilisasi selama 3 hari maupun pada kadar kapur 1%.

Saran

a) Untuk meningkatkan R-Value lempung dapat digunakan cara stabilisasi menggunakan semen dengan kadar semen antara 6% hingga 10% terhadap berat total lempung campuran.
b) Prastabilisasi terhadap lumpur-semen menggunakan kapur pada cupek dengan kadar kapur pada sebesar 1% terhadap berat total lumpur tercampur,
c) Prastabilisasi menggunakan kapur pulah sebanding dengan massa perawatan 7 hari.

DAFTAR PUSTAKA

Saprono, Y., 1999, Stabilisasi Tanah Lumping dengan Semen Merah, Tinjauan Nasional CBR dan Sensitivitas, Prosakif AICT Vol.1, September 1999, Jurusan Teknik Sipil FT UGM.

