PENGAHUKAN PENYALAHAN TERHADAP KINERJA SPARK-IGNITION ENGINE BERBAHAN BAKAR LPG

Tri Agung Rohmat1, Harwin Saptoadi2

ABSTRACT

In the present research, the effects of ignition timing on performance of a LPG-fueled spark-ignition engine has been experimentally examined. The research was conducted by installing a LPG conversion kit in a gasoline engine and varying brake torque, power, and speed. The specific fuel consumption and specific exhaust gas emissions were measured at several ignition timings. The present research shows that best performance of the LPG-fueled engine was obtained at an advanced ignition timing.

PENDAHULUAN

Dengan semakin meningkatnya cadangan minyak yang ada, di sebabkan ada masalah dengan teknologi fuel cell dan motor hibrid, ketergantungan terhadap bahan bakar minyak masih sangat tinggi. Sebagai usaha diversifikasi bahan bakar di Indonesia, pemanfaatan LPG sebagai bahan bakar alternatif untuk kendaraan sudah dimulai di Jakarta, Bandung, dan. Baja dengan banyaknya kendaraan umum yang menggunakan bahan bakar minyak. Pada prinsipnya mesin-mesin yang ada tidak dimodifikasi secara khusus, tetapi hanya ditambah dengan alat yang disebut converter kit. Alat ini berfungsi untuk mengurangi kerja karburator dalam proses pencampuran antara LPG dan udara sebelum masuk ke silinder.

Salah satu karakteristik bahan bakar gas adalah kark terjadi pencampuran dengan udara akan membentuk volume yang relatif lebih besar dibandingkan dengan bensin. Oleh karena itu walaupun bahan bakar gas mempunyai nilai karet (octane value) persatuan massa lebih besar dibandingkan dengan bensin, tetapi apabila didahului peraturan volume (ini yang lebih dikenal dalam spark ignition engine/motor bensin) maka bahan bakar gas akan mempunyai nilai karet yang lebih rendah. Oleh karena itu perlu dilintas hal apa yang perlu dilakukan untuk mengurangi kinerja motor bensin dengan LPG.

Dengan mengetahui kondisi operasional yang dapat diarahkan dalam meningkatkan kinerja motos bensin dengan LPG maka diharapkan penelitian LPG sebagai bahan bakar alternatif bisa semakin meluas. Hal ini selain akan bisa mengurangi ketergantungan terhadap bahan bakar minyak juga dapat mengurangi emisi gas penyebab utama perpindahan global yaitu CO2 ketika rasio C/H bensin lebih kecil dibandingkan dengan rasio C/H bensin.

Penelitian sekarang ini ditujukan untuk mengetahui pengaruh waktu penyalaan terhadap kinerja motor bensin berbahan bakar LPG.

TUJUAN PESTAKA

Laporan Lemigas (2001) tentang pengujian motor bensin terpisah pada kendaraan mempunyai motor bensin berbahan bakar LPG layak dipakai sebagai mesin penggerak alternatif karena mempunyai jarak tempuh yang hampir sama dengan motor bensin dengan ukuran tanki bahan bakar yang sama. Selain itu emisi gas buangannya mempunyai kadar CO dan HC yang lebih rendah. Tetapi yang masih jadi persoalan adalah terjadinya penurunan daya, peningkatan konsumsi bahan bakar, dan asoselera yang kurang responsif. Walaupun penurunan hal-hal ini tidak lebih dari 10% dibandingkan dengan motor bensin berbahan bakar bensin.

Penelitian yang dilakukan oleh Tjahyono (1997) mengganti analisis kinerja campuran bensin dan alkohol (gasohol) mempunyai bahwa dengan pengetahuan kembali waktu penyalaan untuk gasohol pada 12° sebelum TMA (standar 8° sebelum TMA) akan dapatkan peningkatan kinerja yang signifikan. Data mengatakan sebesar 20,5% dan menjadi sebesar 16,4% dibandingkan dengan penggunaan bensin premium.

Hal-hal yang perlu diperhatikan dalam konversi motor diesel menjadi motor bermotor bakar gas dilaporkan oleh Harawiboro (1999). Pada laporan ini ditunjukkan bahwa perlu modifikasi yang cukup banyak seperti penggantian injektor dengan bahan basis, penyesuaian rasio kompresi dengan

1 Dr. Eng. Tri Agung Rohmat, M.Eng., Staf Pengajar Jurusan Teknik Mesin, Univ. Gadjah Mada
2 Dr.-Ing. Harwin Saptoadi, M.Si., Staf Pengajar Jurusan Teknik Mesin, Univ. Gadjah Mada

MEDIA TEKNIK No.3 Tahun XXV Edisi Agustus 2003 No ISSN 0216-3012
LANDASAN TEORI

Peningkatan kinerja motor bensin secara teoritis paling mudah diaksesi dengan mengubah rasio kompresi. Ini karena tekanan puncak dalam silinder dan efisiensi termal akan meningkat dengan kenaikan rasio kompresi. Tetapi metode ini adalah tidak praktis karena diperlukan modifikasi yang cukup ekstrim seperti dengan mengubah konfigurasi pistons atau blok silinder. Oleh karena itu diperlukan metode lain untuk mempertahankan atau bahkan meningkatkan kinerja motor bensin berbahan bakar LPG.

Sebagian LPG sebagai bahan bakar akan mengurangi kecekeran terjadinya ketukan (knocking). Ini karena bilangan oktan LPG (RON = 104) yang jauh lebih tinggi dari pada bensin premium (KON = 86) maupun premiks (RON = 94). Oleh karena itu pada motor bensin berbahan bakar LPG waktu penyalaan bisa ditentukan sedinendu ruap sehubungan tekanan dan temperatur maksimum dalam silinder bisa lebih tinggi, atau dengan kata lain terjadi peningatan kinerja.

Efek lain dari penekanan LPG adalah terjadinya prabubahan kecepatan rотор (slune propagation speed), LPG mempunyai kecepatan rотор yang lebih besar sekitar 12% dari bensin pada suatu komposisi campuran yang tanpa sebaga waktu yang dihasilkan oleh penambatan api untuk rampai ke end gas menjadi lebih tingkat (Mehalchi, dkk., 1980, 1982). Ini berarti bahwa pada putaran tinggi proses pembakaran akan berlangsung lebih sempurna.

Tabel 1. Kondisi Pelletian

<table>
<thead>
<tr>
<th>Bahan Bakar</th>
<th>Waktu Pelayanan</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE A</td>
<td>Bensin</td>
</tr>
<tr>
<td>CASE B</td>
<td>LPG</td>
</tr>
<tr>
<td>CASE C</td>
<td>= = =</td>
</tr>
<tr>
<td>CASE D</td>
<td>= = =</td>
</tr>
<tr>
<td>CASE E</td>
<td>= = =</td>
</tr>
<tr>
<td>CASE F</td>
<td>= = =</td>
</tr>
</tbody>
</table>

MEDIA TEKNIK No.3 Tahun XXV Edisi Agustus 2003 NicISSN 0216-3012
HASIL PENELITIAN DAN DISKUSI

Hasil pengukuran untuk Case A-F terhadap torsi, daya, perbandingan massa udara dan bahan bakar (AFR), dan konsumsi bahan bakar spesifik (SFC) terhadap putaran mesin masing-masing ditunjukkan pada Gambar 2-5.

Gambar 2. Hubungan Torsi dan Putaran Mesin

70 MEDIA TEKNIK No.3 Tahun XXV Edisi Agustus 2003 No.ISSN 0216-3012
Gambar 3. Hubungan Daya dan Putaran Mesin

Gambar 4. Hubungan AFR dan Putaran Mesin
Gambar 7: Hubungan SFC din Putaran Mesin

Dari Gambar 2 diketahui secara umum torsii mempunyai nilai maksimum pada suatu putaran mesin tertentu, di mana torsii yang dihasilkan dengan bahan bakar LPG menunjukkan nilai yang lebih rendah dibandingkan dengan bahan bakar bensin. Torsi maksimum Case A (bensin) menunjukkan nilai sekitar 114 Nm, sedangkan Case B-F (LPG) berkisar dari 78 sampai 90 Nm. Ini berarti penggunaan LPG sebagai pengganti bensin akan menurunkan torsii sebesar 20-30%. Pada kasus penggunaan LPG, torsi maksimum dicapai pada waktu pengapian sama dengan 12° BTDC, yang diikuti kemudian oleh waktu pengapian 10°, 8°, 6°, dan 4° BTDC. Hal ini menunjukkan bahwa pada penggunaan LPG dibutuhkan waktu pengapian yang lebih panjang dibandingkan waktu pengapian sandar bensin supaya penurunan torsii tidak terlalu besar. Perbedaan waktu pengapian juga berdampak terhadap pola perbuatan torsii pada putaran tinggi, dimana untuk waktu pengapian yang lebih panjang, kemungkinan kurvanya lebih curam dibandingkan dengan waktu pengapian yang lebih lambat.

Gambar 3 menunjukkan hubungan antara pembuahan daya terhadap perubahan putaran mesin. Seperti besaran torsii yang ditunjukkan pada Gambar 2, juga menunjukkan nilai maksimum pada putaran mesin tertentu, besarnya pada putaran yang lebih tinggi. Secara keseluruhan daya maksimum yang dihasilkan oleh penggunaan LPG menunjukkan hasil sekitar 30% lebih rendah dibandingkan dengan penggunaan bensin yang menunjukkan nilai 31 kW. Untuk kasus penggunaan LPG, daya maksimum yang dihasilkan (19-22 kW) mempunyai kecenderungan yang mengingatkan bahwa jika kedua mesin yang diuji berturut-turut menggunakan bahan bakar yang lebih tinggi, walaupun secara tertentu tidak terlalu signifikan.

Pada Gambar 4 ditunjukkan perubahan AFR (air fuel ratio; perbandingan massa udara dan bahan bakar) terhadap perubahan putaran mesin dimana pada suatu putaran mesin tertentu AFR mencapai nilai maksimum. Perubahan AFR untuk kasus bahan baku bensin berkisar 11-14 yaitu suaklot di bawah AFR stoikimetris yang biasa diukur sekitar 14.6. Untuk kasus LPG, secara keseluruhan nilai AFR jauh melibasi nilai AFR stoikimetris yang biasanya adalah sekitar 15,68 (dengan asumsi komposisi LPG adalah murni gas propana C3H8). Ini berarti bahwa pada tabah penebangan secara ini pembakaran dalam silinder berlangsung dalam kondisi campuran miskin (lean mixture).

Hubungan antara SFC (specific fuel consumption; konsumsi bahan bakar per putaran daya) dengan putaran mesin ditunjukkan oleh Gambar 5. SFC untuk semua kasus menunjukkan nilai optimum pada suatu putaran mesin tertentu. Karena SFC erat kaitannya dengan irit tiapnya penekanan bahan bakar, maka hal ini menunjukkan bahwa pembakaran bensin pada putaran rendah maupun pada putaran tinggi akan menghasilkan penekanan bahan bakar yang boros. Perbandingan nilai SFC antara kasus bahan bakar
bensin dan LPG menunjukkan bahwa persaingan LPG memberikan keuntungan berupa konsumsi bahan bakar yang lebih irit sekitar 20–30% persatuan daya. Waktu pengapian yang lebih maju menghasilkan nilai SFC yang lebih rendah.

Dari pembahasan-pembahasan yang telah dilakukan di atas diketahui bahwa perbedaan (torsi dan daya) motor bensin yang menggunakan LPG sebagai bahan bakar pengganti bensin lebih rendah dibandingkan dengan apabila menggunakan bensin. Hal ini dapat diterangkan dengan melihat Gambar 4 dimana motor bensin berbahan bakar LPG pada tahap penelitian sekarang bekerja pada AFR yang terjadi tinggi dibandingkan dengan AFR stoikiometriannya. Dengan kata lain bahwa jumlah LPG yang masuk dalam silinder kurang banyak sehingga secara alami energi termal yang dihasilkan dari proses pembakaran juga kurang besar.

Walaupun kecepatan pembakaran (burning velocity) LPG lebih besar dari bensin, waktu penyalaan yang lebih maju untuk operasi dengan LPG dibutuhkan untuk memperbaiki kinerja. Hal ini juga dapat dipahami dari Gambar 4 bahwa dengan AFR yang tinggi (campuran nitrat) waktu yang dibutuhkan untuk merembat dari baku sampai ke end-gas oleh api dari pembakaran LPG menjadi lebih lama.

KESIMPULAN

Dari hasil-hasil di atas dapat diambil kesimpulan sebagai berikut:

1. Pada tahap penelitian sekarang ini torsi dan daya motor bensin dengan LPG lebih rendah sekitar 20–30% dibandingkan apabila menggunakan bahan bakar bensin.

2. Untuk menaklukkan kinerja motor bensin berbahan bakar LPG sehingga lebih mendekati kinerja motor bensin berbahan bakar bensin waktu pengapian perlu dianalisis.

Sebagai keterangan dari penelitian ini direncanakan modifikasi sistem bahan bakar LPG sehingga LPG lebih dalam bentuk cair dari tanki LPG. Hal ini perlu dilakukan supaya LPG masuk ke silinder dalam jumlah yang cukup.

UCAPAN TERIMA KASIH

Kedua penulis mengucapkan banyak terima kasih kepada Edy Dwi Ranto, mahasiswa angkatan 1997 Jurusan Teknik Mesin Universitas Gadjah Mada, atas segala bantuanmu dalam pengambilan data.

DAFTAR PUSTAKA