ABSTRACT

On the Bengawan Solo River bank, Biren and Kerek Areas, Ngawi-East Java province, there are exposed good, forth and complete sequence outcrops / stratigraphy of Kendeng Zone. These outcrops show some formations i.e. Kerek, Kaliste, Kliti, Pucangan and Kambah Formations. This study is only focused on Kerek Formation, including Banyuurip and Sental Members. The goal of the study is to analyze sedimentology and depositional facies of the Kerek Formation by measured section (MSS) method.

The result of the 250 m measured section shows that the lithology of this sequence was dominated by intercalation of sandstone and claystone, vary in thickness and as products of turbidity series. Banyuurip Member comprises of calcareous sandstone facies (F-8) and intercalation calcareous sandstone and claystone (F-9). Sedimentary structure, was observed, which is dominated by parallel lamination and convolute lamination. Sental Member comprises of calcareous sandstone (F-8) and intercalation calcareous sandstone and claystone (F-9a and F-9b). Both Banyuurip and Sental Members were deposited in the middle - outer fan environment and have Middle - Upper Miocene (N13 - N17) age. The main flow of the deposits was formed by sandy high-density to low density turbidity current (SHDC - LDC).

The vertical facies change of the Banyuurip to Sental Member is characterized by transgressive phase and followed by rising change of sandstone and claystone. Components to the upper part, claystone components in the Sental Member is more dominant than sandstone fractions.

PENGANTAR

Lokasi penelitian berada pada sepanjang jalan Kalai Bengawan Solo pada Desa Biren sampai Desa Kerek, Kecamatan Ngawi Purba, Kabupaten Ngawi, Jawa Timur (Gambar 1). Lokasi penelitian termasuk daerah lembah peta 50X50 d-93 (D).

CARA PENELITIAN

Pendekatan ini dilakukan pada data lapangan yang diamati langsung di lapangan yang dikerjakan dengan beberapa data sekunder untuk melengkapi data yang mendukung hasil penelitian. Tahapan penelitian mulai dari proses input. Bagian utama hasil analisis data adalah sebagai berikut:

Tahap Persiapan:

- Pengumpulan data sekunder dari penelitian terdahulu
- Pengumpulan peta topografi dan foto udara
- Perancang alat untuk kerja lapangan dan kerja laboratory
- Kunjungan singkat ke lapangan untuk mengenalkan kondisi suatu, antisisi permasalahan yang nampak, pengetahuan gambaran singkat kondisi geologi dan menetapkan jalur asistografi terukur.

1. Irsy Safiyuwoto, MT. Eosen. Jurusan Teknik Geologi. FT UGM
2. Sugeng Sapto Surjono, Dosen Jurusan Teknik Geologi. FT UGM

MEJA TEKNIK No.4 Tahun XXV Edisi November 2003 No.ISSN 0216-3012
Gambar 1. Peta lokasi penelitian

Tahap pekerjaan lapangan:
- Penetapan geologi sepanjang jalur pengukuran stratigrafi terukur
- Membuat stratigrafi terukur sepanjang jalur yang telah ditetapkan dengan skala 1:100
- Mengambil sampel batuan terpilih untuk analisis laboratorium
- Merencanakan singkapan geologi dengan foto atau sketsa

Tahap pekerjaan laboratorium/studio:
- Analisis mikropaleontologi untuk menentukan kisaran umur batuan
- Analisis petrografis untuk menentukan tekstur dan struktur batuan secara detail dan komposisi batuan penyusun
- Pemindahan data lapangan
- Sintesa data dan mempersiapkan toksis an ilmiah

MEDIA TEKNIK No.4 Tahun XXV Edisi November 2003 No.ISSN 0216-3012

HASIL, PENELITIAN

Fases berburu kasar (Coarse Grained Facies - CGF)

Gambar 2. Kenetapan fases kasar F5 (Batupasar konglomerat) pada Anggota Banyuurip, pada meter ke-40 stratigrafi terukur.

Fases Berburu Halus (Fine Grained Facies – FGF)
Fases berburu halus yang dapat dijumpai pada seri Anggota Banyuurip ada 3 macam fases, yaitu: fases 8 (F8), fases 9a (F9a), dan fases 9b (F9b).

14 MEDIA TEKNIK No.4 Tahun XXV Edisi November 2003 No.ISBN 0226-3012
Fasies ini dicirikan oleh litologi berupa batupasir gampingan yang teluk dan memiliki lapisan-lapisan sejajar yang cukup banyak (Gambar 3). Kebanyakan penebuan fisies ini berkurang butir pasir halus sampai sedang. Fasies 8 ini diinterpretasikan sebagai produk rekonstruksi sediment setelah mengalami loncatan hidrolik.

Gambar 3. Kerampuhan fasies halus F8 (Batupasir gampingan) pada Anggota Banyuurip, meter ke-10a stratigrafi terukur.

b. Fasies 9a (F9a)

Fasies ini dicirikan oleh penelitian batupasir gampingan dan batupasir, dengan kandungan batupasir lebih sedikit daripada batupasir gampingan. Fasies ini diinterpretasikan sebagai fasies turbitid yang diendapkan melalui proses reaction-mix-flows. Yang berhubungan dengan berbagai tahap sedimentasi yang berbeda dari arus turbid sediments rendah.

c. Fasies 9b (F9b)

Fasies 9b yang terbentuk dalam Anggota Banyuurip berulang-sebabnya 5 kali, dengan ketedahan yang berbeda-beda. Fasies 9b ini dapat berkontak dengan F9a atau F8, pada bagian bawah dan atasnya. Tidak pernah ada kontak dengan fasies 5.

Fasies Anggota Sentul

Fasies berbatu kasar (Coarse Grained Fasies - CGF):

MEDIA TEKNIK No.4 Tahun XXV Edisi November 2003 No.ISSN 0216-3012 15
Fasies 5 yang ada di dalam Anggota Sentul hanya sekali terbentuk, tidak mengalami perulangan, didapatkan pada bagian atas Anggota Sentul pada stratigrafi terutam, Perubahan dari P9a (produkt low density turbidity current) ke P15, akibat perubahan muka air laut yang menyebabkan terjadinya luncuran berikutnya, sehingga mampu menghasilkan pravely high density turbidity current.

Fasies Berburut Halus (Fine Grained Facies – FGF) Fasies berburut halus yang dapat dijumpai dalam Anggota Sentul hanya ada dua macam yakni fasies 9a (P9a), dan fasies 9b (P9b), sementara fasies 8 tidak dijumpai. Hal ini disebabkan karena tidak terjadi perubahan mekanisme transformasi dari low density current ke high density current dalam sekali luncuran atau tidak terjadi rekonsentrasi sedimen setelahfluida mengalami loncatan hidrolik selama sedimentasi Anggota Sentul di stratigrafi terukir ini.

a. Fasies 9a (P9a) Fasies ini secara umum dicirikan oleh perselingan batupasir gampingan dan batulempung, dimana rasio batupasir gampingan lebih sedikit daripada batulempungnya. Fasies ini mendominasi Anggota Sentul dan diterjemahkan sebagai fasies turbidit yang diendapkan melalui proses traction-plus-fallout dengan luncur adalah arus turbidites rendah.

Fasies 9a yang ada mengalami perulangan sebanyak 2 kali, dengan ketebalan masing-masing 40 meter di bagian bawah, kontak dengan Anggota Geyusurup dan 21 meter pada bagian atas, kontak dengan fasies kasaranya. Fasies 9a memiliki kontak dengan fasies 9b, ataupun F5 baik kontak atas maupun bawah.

b. Fasies 9b (P9b) Fasies ini dicirikan oleh perselingan batupasir gampingan dan batulempung, dimana memiliki rasio batupasir/batulempung yang lebih tinggi dibandingkan fasies 9a (1). Batupasir pada fasies ini memiliki ukuran butir yang sama dengan ukuran butir pada P9a. Fasies 9b yang ada dalam Anggota Sentul hanya sekali terbentuk, dengan kontak pada bagian atas dan bawah dengan fasies 9a. Pada fasies 9b ini terdapat selena 5 setebal 1 meter.

Gambar 4: Kenampakan fasies halus P9a (perselingan batupasir gampingan dan batulempung dengan rasio batulempung lebih besar dibanding batupasir gampingan) pada meter ke-170 stratigrafi ierenkur.

Gambar 5: Kenampakan fasies halus P9b (perselingan batupasir gampingan dan batulempung dengan rasio batupasir/gampingan lebih besar dari batulempung) pada meter ke-208 stratigrafi terukir.

PEMBAHASAN Berdasarkan atas pengelompokkan fasies sebelumnya, maka dapat ditentukan macam facies tract yang terbentuk. Fasies yang terbentuk pada lokasi penelitian kebanyakan berupa perulangan dari F5, F8, P9a, dan P9b, dengan intensitas kecelakaan yang berbeda-beda. Maka berdasarkan asosiasi fasies yang terbentuk tersebut, dapat ditentukan macam facies tract yang berlaku pada daerah penelitian adalah Highly-Efficient Turbidity Current, walaupun tidak sepelehnya tidak ditemukan fasies F3, F6 atau F7 di daerah penelitian. Tidak diketemukannya fasies ini dapat disebabkan oleh:

1. Proses erozi yang terjadi hingga menghilangkan fasies-fasies tersebut.
2. Fasies yang lain terbentuk, hanya saja tidak tersingkap di lokasi penelitian.
3. Belum sempat terbentuk fasies tersebut akibat tidak terjadinya mekanisme deponisi atau mekanisme transformasi sedimen yang mendukung terbentuknya fasies-fasies tersebut.
Mekanisme sediennsentasi pada arus turbidit densitas tinggi yang terjadi berupa sandy turbidity current, yang dilanjutkan dengan mekanisme deposi berupa en masse deposition, sehingga membentuk FS, dan FSb. Sedang pada low density turbidity current akan mampu menghasilkan produk FPa dan Fb yang kemudian terjadi pengendapan secara traction-fallout yang diikuti deposition of homogeneous mud.

Berdasarkan data urutan litologi beserta ciri fisik bahan yang terlihat dalam profil vertikal maka dapat diinterpretasikan bahwa lingkungan pengendapan Formasi Kerek berdasarkan Klasifikasi Mutti (1992) adalah sebagai berikut:

1. Lingkungan pengendapan Middle Fan
 Lingkungan pengendapan Middle Fan ini tercemer melalui kemampuan ukuran batuan yang fining upward, perselisihan batupasar dan batulempung yang menepi ke atas, atau relatif konstan. Lingkungan pengendapan Middle Fan ini diinterpretasikan pada seluruh Anggota Banyuipur dan Anggota Sentul bagian atas.

Sumber material penyusun Formasi Kerek dapat diinterpretasikan berasal dari selatan dan utara daerah penelitian. Interpretasi sumber berasal dari utara daerah penelitian disadarkan atas unsur mineral kuarza yang ditmerukan pada saat analisis petrograf yang dimungkinkan bahwa kuarza tersebut berasal dari batuan granit yang merupakan penyusun benua Asia (dimungkinkan sama dengan kuarza pada granit Pulau Karimunjava dan granit Pulau Borneo). Sumber material berasal dan selanjut diidentifikasi dengan adanya fragmen batuan andesit dan unsur tufar yang dimungkinkan merupakan produk dari Pegunungan Selatan.

KESIMPULAN
1. Di daerah penelitian pada jalur stratigrafi terukur yang dilakukan, Formasi Kerek dapat dipisahkan menjadi Anggota Banyuipur dan Anggota Sentul.
2. Litologi penyusun Anggota Banyuipur adalah perselisihan batupasar gampingan dan batulempung dengan rasio batupasar lebih banyak dibandingkan batulempungnya. Litologi penyusun Anggota Sentul adalah perselisihan batupasar gampingan dan batulempung dengan rasio batulempung lebih banyak dibandingkan batupasarnya.
3. Fares pengendapan yang berkembang pada kedua anggota tersebut adalah perulangan dari Fases : F-5, F-8, F-9a dari F-9b, pada lingkungan pengendapan adalah Middle –Outer fan dan pada kala Miosen Tengah-Miosen Atas, atau N 13 – N 17.

DAFTAR PUSTAKA