
PENURUNGAN KONSENTRASI TRIGLISERIDA DARIH OLEH PROGRAM PEMBATAAN PAKAN DI AWAH PERLUMBUHAN PADA BROILER

Urup Santosos

INTISARI

Penelitian ini bertujuan untuk mengetahui pengaruh pembatasan pakan di awal perlumbaan terhadap performansi, konsentrasi trigliserida dan kolesterol darah dan aktivitas enzim yang berperan dalam sintesis asam lemak pada broiler. Delapan ekor broiler betina direndam dalam empat kelompok perlakuan yaitu satu kelompok sebagai kontrol yakni broiler yang diberi pakan secara bebas (ad libitum) dan tiga kelompok lainnya diberi pakan sebesar 75% dari kontrol selama 5, 10 atau 15 hari. Hasil penelitian menunjukkan bahwa pembatasan pakan tidak mempengaruhi secara nyata terhadap berat badan pada umur 56 hari. Pembatasan pakan secara nyata menurunkan konsentrasi trigliserida pada strum pada umur 56 hari (P < 0.05), dan menurunkan kadar trigliserida di hati pada broiler yang dibatasi pakan selama 15 hari (P < 0.05). Pembatasan pakan secara nyata menurunkan aktivitas enzim acetyl-CoA carboxylase di hati (P < 0.05) pada umur 28 hari. Aktivitas enzm fatty acid synthetase di hati pada broiler yang dibatasi pakan selama 15 hari secara nyata lebih rendah dibandingkan dengan kelompok perlakuan lainnya (P < 0.01). Dapat disimpulkan bahwa pembatasan pakan di awal perlumbaan menurunkan konsentrasi trigliserida darah tanpa menurunkan berat badan broiler pada umur 56 hari.

(Kata kunci: Pembatasan pakan kementara, Trigliserida, Broiler)

Buletin Peternakan 24 (2): 57 - 63, 2000

1 Fakultas Pertanian Universitas Bengkulu.
REDUCTION OF TRIGLYCERIDE CONTENT BY EARLY FEED RESTRICTION IN BROILER CHICKS

ABSTRACT

This study was conducted to evaluate effect of early feed restriction on performance, lipid fractions in serum and hepatic lipogenic enzyme activity of broilers. Eighty female broilers were distributed to four groups. One group was the control group and other three groups were fed 75% of control feed intake for 5, 10 or 15 days. Results show that early feed restriction had no effect on body weight at 56 days of age. At 56 days of age, it significantly reduced triglyceride concentration of serum (P<0.05), and reduced hepatic triglyceride in broilers restricted for 15 days. Early feed restriction significantly increased the activity of acetyl-CoA carboxylase activity at 28 days of age (P<0.05). Activities of fatty acid synthetase in broilers restricted for 15 days were significantly lower than those of the control group (P<0.05). In conclusion, early feed restriction reduced the concentration of triglyceride in serum with no effect on body weight at 56 days of age.

(Key words: Feed restriction, Triglyceride concentration, Broiler.)

Introduction

An attempt has been conducted by many investigators to reduce body fat content using early feed restriction. This method was based on the fact that this program exerted a negative effect on subsequent lipid deposition. The recent investigation showed that in vivo hepatic fatty acid synthesis pathway contains three important extramitochondrial enzymes necessary for the synthesis of long chain fatty acid, ATP-citrate lyase, acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS). Since ACC has been proposed as the rate-limiting enzyme of fatty acid synthesis by a number of investigations, a change in ACC activity might reflect a change in fatty acid synthesis. A reduced hepatic acetyl-CoA carboxylase activity which may indicate lower hepatic fatty acid synthesis is of major factor influencing hepatic triglyceride synthesis (Kesby et al., 1990). Arbeer et al. (1990) reported that in hamster, inhibition of fatty acid synthesis decreases VLDL triglyceride secretion into the blood and therefore reducing plasma triglyceride.

There was inconsistent response of broiler in early feed restriction on reduction of triglyceride concentration in plasma. Therefore, the present study was conducted to evaluate early feed restriction effect on triglyceride reduction of plasma and the possible mechanism was discussed.

Methodology

One hundred and eighty one-day-old female broiler chicks obtained from commercial hatchery were used in this study. From 1 to 14 days of age, supplemental heat was provided with a banking heat lamp. The chicks were maintained on the floor in a windowless house, under constant fluorescent lighting with feed and water available ad libitum. At 5 days of age, chicks were divided into 4 groups as follows. One group was fed ad libitum (60 chicks) as control group and other three groups were fed 75%, 50% and 25% ad libitum for 5, 10 or 15 day (40 chicks each group). Water was provided ad libitum and recommended husbandry practices were applied in this experiment.

At 28 and 56 days of age, 5 chicks were obtained in control and restricted fed groups, were killed and abdominal fat and liver were immediately removed and weighed. One portion of the liver was placed in an ice-cold saline to measure the activities of lipogenic and cholesterolgenic enzyme activities, and another portion was frozen and stored at -30°
C until analysis for various lipid fractions. Blood was also taken from wing vein with heparinized syringe and then centrifuged at 2,500 rpm for 10 minutes. Plasma obtained was stored and frozen at -30 °C for analysis of lipid fraction concentration. The lipid fractions were separated by thin-layer chromatography on silica gel using n-butyl-diethylkther-formic acid (60:10:1) and butane-benzene (1:1) as developing solvent and quantified by ATOSCAN TM-10 TLC/ID Analyzer (Laron Laboratories, Inc., Tokyo, Japan 101).

Liver homogenates for enzyme activity were obtained by the method previously described (Santos et al., 1993). ACC activity was assayed by the HCO₃⁻-fixation method (Qureshi et al., 1980). FAS activity was assayed by the 14C-acetyl-CoA incorporation method (Hsu et al., 1965). The protein content of the solution used for enzyme assay was determined by the method of Lowry et al. (1951) using bovine serum albumin as the standard. ACC and FAS activities were expressed as nanomole of substrate converted to product per minute per milligram of protein at 27°C. Samples were analyzed in triplicate and they were accepted if the differences were less than 15%.

Table 1. Effect of early feed restriction on growth characteristics of female broiler

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>SE</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 days of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>98.1</td>
<td>97.6</td>
<td>90.8</td>
<td>86.3</td>
<td>17.1</td>
<td><0.01</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>15.56</td>
<td>14.79</td>
<td>13.72</td>
<td>13.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>1.69</td>
<td>1.59</td>
<td>1.56</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 day of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>270.2</td>
<td>270.5</td>
<td>266.8</td>
<td>262.8</td>
<td>46.6</td>
<td>ns</td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td>58.37</td>
<td>54.96</td>
<td>54.51</td>
<td>54.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>2.25</td>
<td>2.11</td>
<td>2.09</td>
<td>2.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores represented means for 40 chicks. Means within a row not followed by the same superscripts are significantly different.

Results

Effects of early feed restriction on growth characteristics of female broilers were shown in Table 1. At 27 day of age, body weight of restricted chicks were significantly decreased (P<0.01) except for chicks restricted for 5 day. At 56 day of age, body weight was not significantly different.

Table 2 shows effect of early feed restriction on triglyceride and cholesterol concentration in serum and liver. At 27 day of age, triglyceride content of liver was significantly reduced (P<0.01), whereas triglyceride concentration of serum was significantly increased (P<0.05). At 56 day of age, triglyceride content of liver was significantly reduced in chicks restricted for 5 day. On the other hand, triglyceride concentration of serum was significantly reduced (P<0.05). Early feed restriction did not influence cholesterol content of the liver neither at 28 nor 56 day of age. At 28 day of age, chicks restricted for 10 or 15 days had lower cholesterol concentration of serum (P<0.01) as compared with the control. At 56 day of age however, the program had no effect on cholesterol concentration.
Table 2. Effect of early feed restriction on triglyceride and cholesterol contents in liver and blood serum*.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>SE</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglyceride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver (mg/g)</td>
<td>23.3<sup>a</sup></td>
<td>14.6<sup>b</sup></td>
<td>8.4<sup>d</sup></td>
<td>8.2<sup>c</sup></td>
<td>0.99</td>
<td><0.01</td>
</tr>
<tr>
<td>Serum (mg/100 ml)</td>
<td>22.5<sup>a</sup></td>
<td>25.1<sup>c</sup></td>
<td>25.8<sup>ab</sup></td>
<td>9.5<sup>b</sup></td>
<td>5.87</td>
<td><0.05</td>
</tr>
<tr>
<td>Cholesterol Liver (mg/g)</td>
<td>28.9<sup>a</sup></td>
<td>31.9<sup>b</sup></td>
<td>34.0<sup>b</sup></td>
<td>42.9<sup>c</sup></td>
<td>5.6</td>
<td><0.05</td>
</tr>
<tr>
<td>Serum (mg/100 ml)</td>
<td>154.5<sup>a</sup></td>
<td>100.0<sup>b</sup></td>
<td>25.9<sup>c</sup></td>
<td>88.0<sup>d</sup></td>
<td>16.6</td>
<td><0.05</td>
</tr>
<tr>
<td>Blood serum cholesterol (mg/100 ml)</td>
<td>29.9<sup>a</sup></td>
<td>2.17</td>
<td>2.12</td>
<td>2.34</td>
<td>0.11</td>
<td>ns</td>
</tr>
<tr>
<td>56 days of age</td>
<td>2.44</td>
<td>2.73</td>
<td>2.45</td>
<td>2.33</td>
<td>0.17</td>
<td>ns</td>
</tr>
<tr>
<td>28 days of age</td>
<td>244.8<sup>a</sup></td>
<td>233.5<sup>b</sup></td>
<td>196.5<sup>b</sup></td>
<td>189.0<sup>c</sup></td>
<td>6.2</td>
<td><0.01</td>
</tr>
<tr>
<td>56 days of age</td>
<td>177.0</td>
<td>174.4</td>
<td>163.3</td>
<td>184.3</td>
<td>7.8</td>
<td><0.05</td>
</tr>
</tbody>
</table>

* Values reported represent means for 5 chicks. Means within a row that do not followed by the same superscripts are different.
¹ Probability of a significantly treatment effect. ns: not significantly different.

Table 3. Effect of early feed restriction on carcass composition.⁽¹⁾

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>5 days</th>
<th>10 days</th>
<th>15 days</th>
<th>SE</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>60.9<sup>a</sup></td>
<td>62.8</td>
<td>63.4</td>
<td>44.4</td>
<td>0.25</td>
<td>ns</td>
</tr>
<tr>
<td>56 days of age</td>
<td>56.5</td>
<td>57.9</td>
<td>56.4</td>
<td>57.0</td>
<td>0.33</td>
<td>ns</td>
</tr>
<tr>
<td>Crude protein</td>
<td>14.2</td>
<td>14.6</td>
<td>14.7</td>
<td>15.2</td>
<td>0.32</td>
<td>ns</td>
</tr>
<tr>
<td>56 days of age</td>
<td>13.8</td>
<td>14.2</td>
<td>13.8</td>
<td>14.0</td>
<td>0.28</td>
<td>ns</td>
</tr>
<tr>
<td>Ether extract</td>
<td>19.1</td>
<td>19.0</td>
<td>17.7</td>
<td>17.9</td>
<td>0.5</td>
<td>ns</td>
</tr>
<tr>
<td>56 days of age</td>
<td>25.9</td>
<td>25.8</td>
<td>25.9</td>
<td>25.6</td>
<td>0.4</td>
<td>ns</td>
</tr>
<tr>
<td>Ash</td>
<td>3.8<sup>a</sup></td>
<td>3.6<sup>b</sup></td>
<td>4.2<sup>c</sup></td>
<td>2.5<sup>b</sup></td>
<td>6.2</td>
<td><0.05</td>
</tr>
<tr>
<td>56 days of age</td>
<td>3.8<sup>a</sup></td>
<td>2.1<sup>c</sup></td>
<td>3.3<sup>c</sup></td>
<td>3.4<sup>c</sup></td>
<td>0.3</td>
<td><0.05</td>
</tr>
</tbody>
</table>

¹ Values reported represent means for 5 chicks. Means within a row that do not followed by the same superscripts are different.
² Probability of a significantly treatment effect. ns: not significantly different.

Table 3 shows effect of early feed restriction on carcass composition. Early feed restriction did not affect moisture, fat and protein contents neither at 27 nor at 56 day of age.

Table 4 shows effect of early feed restriction on ACC and FAS activities. At 27 days of age, ACC was significantly different (P<0.05) whereas FAS was not. At 56 days of age, ACC was significantly different (P<0.05) and FAS was reduced in chicks restricted for 5 days (P<0.05).

60
Table 4. Effect of early feed restriction on hepatic acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS) activity

| | Control | 5 days | 10 days | 15 days | SE | P
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A C</td>
<td>28 days of age</td>
<td>1.25b</td>
<td>1.94a</td>
<td>1.38b</td>
<td>0.88a</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>56 days of age</td>
<td>0.78b</td>
<td>0.89b</td>
<td>1.22b</td>
<td>0.69a</td>
<td>0.15</td>
</tr>
<tr>
<td>F A S</td>
<td>28 days of age</td>
<td>4.65</td>
<td>4.05</td>
<td>4.84</td>
<td>4.27</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>56 days of age</td>
<td>4.96b</td>
<td>5.60a</td>
<td>5.00a</td>
<td>4.87b</td>
<td>0.26</td>
</tr>
</tbody>
</table>

1) Values reported represent means for 5 chicks. Means within a row that not followed by the same superscripts are significantly different.

2) Probability of a significantly treatment effect. ns: not significantly different.

Discussion

The present study showed that duration of early feed restriction influenced the broiler ability to achieve body weight similar to the control group. This observation was in agreement with the observation of Santoso et al. (1995). Longer duration of feed restriction resulted in shorter time for broiler to allow suitable liver compensatory growth. Consequently, it resulted in slightly lower body weight at 56 days of age. It is interesting to note that restricted chicks for 5 days could achieve normal body weight at 27 day of age with lower feed conversion ratio. In mixed-sex broilers, Santoso (1997) showed that restricting those broilers at level 25% for 3 days also resulted in complete liver compensatory growth at 28 days of age with lower feed conversion ratio (about 6.7%).

In general, early feed restriction tended to lower feed conversion ratio. This result was in agreement with the observation of Santoso et al. (1993a, b, 1995a, b, Santoso, 1997, 1998; and other authors) Mosier (1986) speculated that even compensatory growth occurred because animals have a set point of body size at given age. Thus, when restricted chicks were provided ad libitum access to feed in the current study, they exhibited faster gain than the control, especially for chicks restricted for 5 days.

Higher hepatic ACC activity at 28 days of age, the rate-limiting enzyme in fatty acid synthesis, may result in higher fatty acid synthesis in the liver. Scovre et al. (1997) stated that fatty acid synthesis is of major importance for triglyceride synthesis in the liver. Therefore, triglyceride content of liver should be higher in restricted feed chicks. The current results however, showed lower hepatic triglyceride. This is logical for it is possible that triglyceride release into the blood of restricted feed chicks was increased, and thus increased the triglyceride concentration in serum as shown in the present study. In contrast, at 56 days of age, a change in ACC activity, which was accompanied by a change in hepatic triglyceride was not fully followed by a change in serum triglyceride. This phenomena shows that lipid metabolism of younger broilers might be different from older ones.

It was postulated that an increase in serum triglyceride concentration was correlated with an increased in body/carcass fat content (Griffin et al., 1982; Whitehead and Griffin, 1982). Present study however, failed to show this fact. It is possible that early feed restriction resulted in a shift in fat metabolism of broilers.

Ramirez et al. (1984) found that feed restriction produced a decrease in chicks liver 3-hydroxy-3-methylglutaryl-CoA reductase activity, the rate-limiting enzyme of chole.
terogenesis, and in livet rat, refedding had
little effect on cholesterologenesis (Cockburn
and Van-Brugger, 1959). Therefore, one of
the factors responsible for decreasing choles-
terol content in the serum of 28-day-old broiler
restricted for 10 or 15 days is a decrease in
cholesteryl esters of the liver. However, at 56
days of age serum cholesterol remain
unchanged.

Early feed restriction decreased ash
content of carcasses in chicks restricted for 15
days at 28 days of age, and in those restric-
ted for 5 days at 56 days of age. This result was
not in agreement with the observation of
Santosso et al. (1993b) who found that early
feed restriction increase ash content. The
present study failed to decrease body/oeasas
fat content. Plavnik and Hurwitz (1985) stated
that duration and level of feed restriction
influence the success of early feed restriction
program to reduce body fat content.

Conclusion
It was concluded that early feed restric-
tion reduced the concentration of triglyceride
in serum with no effect on body weight at 56
days of age of broiler chicks.

References
Chemists.
Arbbery, C. M. D. S. Meyers, K. E. Berquist,
and R. E. Gregg. 1992. Inhibition of
fatty acid synthesis decreases very low
density lipoprotein secretion in the
hamster. Lipid Res. 33:843-852.
Acetate metabolism in vivo: Effect of
Griffis, H. D., C. C. Whitehead and L. A.
Broadbent. 1982. The relationship
between plasma triglyceride concentra-
tions and body fat content in male and
female broilers—a basis for selection?
Bri Poultry Sci. 23: 15-27.

The purification and properties of the
fatty acid synthetase of pigeon liver. J.
Lowny, G. H., N. J. Rasebrough, A. L. Pelt
and R. J. Randell. 1951. Protein
measurement with dinit phenol reagent.
Plavnik, I. and S. Hurwitz. 1985. The
performance of broiler chicks during
and following a severe feed restriction
at an early age Poultry Sci. 64: 1118-
1125.
Qureshi, A. A., W. C. Burger, N. Prentice, H.
R. Bird and M. L. Scare. 1980. Regu-
lation of lipid metabolism in chicken
110:388-393.
Ramirez, H., M. J. Aljendro, M. E. Zafra,
J. L. Segovia, and E. Garcia-Perez.
1984. Effect of fasting on 3-hydroxy-
3-methylglutaryl-CoA reductase and
restriction-on growth, body composition
and lipid accumulation in mixed-sex
broiler chicks. Research Report. IITSF,
Jakarta.
restriction on growth, breast and thigh
composition and fat deposition in
Bengkulu University, Bengkulu.
1995a. Early skip-a-day feeding of female
broiler chicks fed high-protein reali-
tation diets. Performance and body
1995b. Does feedrestriction refeeding
program improve growth characteris-
tics and body composition in broiler
Santosso, U., K. Tanaka, and B. S.
Youn. 1993. Effects of early feed
restriction on growth performance and