ABSTRACT

The number of plates and distillation column performances on acetone separation from acetone-ethanol-water-butanol mixture have been observed by computer simulation. The approaches used here are based on mass and heat balance equations and thermodynamics equilibrium.

In the determination of the number of column plates including the determination of the optimum feed plate number, the column performance is overviewed to the acetone feed composition changes to obtain new reflux ratios and reboiler duties in accordance to the acetone recovery and top product composition set points. The effects of the feed composition variations to the condenser duty, distillate rate, reflux rate, bottom product composition, and ethanol recovery into bottom product and temperature and composition profiles, vapor and liquid rates of each plate were also observed.

PENDEHULUAN

Dalam banyak operasi industri, campuran multikomponen harus dipisahkan, dan perhitungan yang panjang diperlukan untuk menentukan distribusi komponen-komponen dalam produk dan jumlah plate yang diperlukan. Perhitungan multikomponen memerlukan penyelesaian yang simultan dari neraca massa, neraca panas, dan kesetimbangan termodynamika dari sistem yang dipakai. Campuran multikomponen terdiri dari kumpulan persamaan-persamaan non-linear dari komposisi, suhu, laju uap dan cairan yang meninggalan stage, sehingga penyelesaian yang lebih teliti secara analitis sulit dilakukan. Dengan perkembangan teknologi persoalaan tersebut dapat diatasi dengan simulasi komputer, sehingga dapat dilakukan dengan mudah dan cepat.

Aseton, butanol, dan etanol dapat dihasilkan dari fermentasi dengan bantuan mikroorganisme Clostridium acetobutylicum menggunakan bahan baku tetes (Roffler dkk., 1987) maupun limbah industri minyak kelapa sawit berupa tandan kosong kelapa sawit (Mangunwidjaja dkk., 1992). Produk fermentasi tersebut perlu dipisahkan secara optimal untuk mendapatkan produk dengan komposisi yang dinginkan, sehingga perlu dihitung perencanaan kolom pemisah dengan penentuan jumlah plate dan letak plate umpan yang optimal, juga dipelajari unjuk kerja kolom tersebut terhadap perubahan komposisi dalam umpan.

TINJAUAN PUSTAKA

Metode Bubble Point untuk Perhitungan Distilasi

Gambar 1. Model skematik Countercurrent Cascade N Stage Kesetimbangan

1Andy Sasonoko, S.T., Alumni Jurusan Teknik Kimia, FTI – ITS
2Agus Budiiman, S.T., Alumni Jurusan Teknik Kimia FTI – ITS
3Ir. Gede Wibawa, M.Eng., Dosen Jurusan Teknik Kimia FTI – ITS
1. Algoritma Matriks Tridiagonal

Algoritma matriks tridiagonal yang digunakan oleh Wang-Henke, dikembangkan oleh Thome dengan mengelimi y i atau \(L \) dan \(d \) dari persamaan narca masa (M) (Henley dan Seader, 1981). Persamaan-persamaan yang dihasilkan adalah sebagai berikut:

\[
A_j x_{j+1} + B_{j+1} x_{j+1} + C_j x_j = D_j \tag{7}
\]

\[
A_j = v_j + \sum_{i=1}^{j} (v_i - u_i) - v_j \quad 2 \leq j \leq N \tag{8}
\]

\[
b_j = \sum_{i=1}^{j} (v_i - u_i - v_j + v_i - u_i) \quad 1 \leq j \leq N \tag{9}
\]

\[
c_j = v_{i+1}, i \leq j \leq N-1 \tag{10}
\]

\[
d_j = -f_{j-1} \quad 1 \leq j \leq N \tag{11}
\]

\[
P_j = \frac{C_j}{B_j - A_j P_{j+1}} \tag{12}
\]

\[
q_j = \frac{D_j - A_j q_{j+1}}{B_j - A_j P_{j+1}} \tag{13}
\]

Untuk stafe \(N \) diperoleh harga \(x_N \) sebagai berikut:

\[
x_N = q_N \tag{14}
\]

Harga \(x_j \) dihilangkan dengan backward substitution.

\[
x_{i-1} = q_i \cdot f_{i+1} \quad N - 1 \leq j \leq 1 \tag{15}
\]

Persamaan (15) tersebut sesuai matriks identitas.

2. Luas Air Uap dan Cairan Tiap-Tiap Stage

Luas air uap dapat dihitung dengan persamaan narca entalpi (Henley dan Seader, 1981):

\[
q_i V_i + \beta V_i = \eta \tag{16}
\]

dimana :

\[
q_i = h_{g_i} \tag{17}
\]

\[
\beta = \frac{h_{g_i}}{H_{g_i}} \tag{18}
\]

\[
\eta = \frac{V_i - (\nu_{i-1} \cdot \nu_{j-1} V_{j-1})}{\beta} \tag{19}
\]

Secara umum, luas air aliran uap pada tiap stage adalah:

\[
V_i = \frac{\eta_{i+1} - \alpha_{i+1}}{\beta_{i+1}} \tag{20}
\]

Luas air cairan pada tiap stage dihitung sesuai Pers. (6).

106 MEDIA TEKNIK No.3 Tahun XXII Edisi Agustus 2000 No.ISSN 0216-3012
3. Kriteria Konvergensi

Dalam penyelesaian ini dianggap konvergen bila variabel iterasi \(T_j \) dan \(V_j \) konstan (Henley dan Seader, 1981). Salah satu kriteria yang dapat digunakan adalah sebagai berikut:

\[
\sum_{m=1}^{n} \left(T_j^{(m)} - T_j^{(m-1)} \right)^2 \cdot \frac{1}{V_j^{(m)} - V_j^{(m-1)}} \leq \varepsilon
\]

Dengan \(\varepsilon \) adalah harga error yang dapat ditoleransi. Namun Wang-Henke menyarankan kriteria yang lebih sederhana hanya berdasarkan \(T_j \) saja yaitu:

\[
\tau = \sum_{m=1}^{n} \left(T_j^{(m)} - T_j^{(m-1)} \right)^2 \leq 0,01 N
\]

dimana N merupakan jumlah stage.

Kriteria yang disarankan Wang-Henke merupakan jumlah dari error tiap stage yang dikuradurkan. Hal ini tidak menunjukkan error tiap stage yang memenuhi toleransi, sehingga dibuat kriteria konvergensi yang berdasarkan error tiap stage yang memenuhi toleransi:

\[
\left| T_j^{(m)} - T_j^{(m-1)} \right| \leq \varepsilon
\]

Harga \(\varepsilon \) merupakan toleransi suhu tiap stage, sehingga dengan kriteria ini dapat memeriksa perbedaan suhu tiap stage agar memeriksa error yang ditoleransi.

METODOLOGI PENELITIAN

Pemogram dibagi dalam dua tahap, yaitu tahap perancangan kolom dan tahap unjuk kerja dari kolom tersebut. Program yang digunakan adalah program yang dibuat sendiri dengan menggunakan bahasa pemrograman FORTRAN.

Algoritma perhitungan metode Bubble Point dari Wang-Henke:

1. Spesifikasi program metode
 - Komposisi, kondisi thermal dan lokasi umpan masuk; tekanan pada tiap stage, laju alir dari side stream, perpindahan pana dari dan menuju setiap stage, kecuali untuk stage ke-1 (kondenser) dan stage ke-N (reboiler); jumlah total stage, laju alir refluks, dan laju alir distillat fase uap.
2. Memberikan harga awal untuk variabel iterasi \(T_j \) dan \(V_j \).
3. Menghitung komposisi liquid pada tiap stage menggunakan metode Thomas
4. Normalisasi komposisi liquid pada tiap stage
5. Menghitung komposisi uap y dan suhu tiap stage \(T_j \) yang baru menggunakan persamaan bubble-point
6. Menghitung beban condensor dan reboiler

7. Menghitung harga \(V_j \) dari Pers. (20) dan \(L_j \) dari Pers. (6)
8. Menguji toleransi error pada Pers. (23), bila memenuhi berarti perhitungan selesai dan bila tidak memenuhi maka ulangi perhitungan kembali pada langkah 3

Asumsi yang digunakan dalam perhitungan adalah:
- gas ideal
- umpan dan refluks adalah cairan jenuh
- kolom distilasi sederhana dengan menggunakan total condensor dan partial reboiler
- efisiensi plate 100 %
- beda tekanan tiap plate sebesar 0,003 atm

Basis perhitungan yang digunakan dalam tahap perancangan kolom atau penentuan jumlah plate kolom adalah:

- Komposisi umpan:
 - (fraksi berat):
 - Aseton: 0,07864, 0,02978
 - Etanol: 0,02184, 0,01126
 - Air: 0,70000, 0,85957
 - Butanol: 0,19952, 0,06299
- Komposisi aseton di produk atas: 99,5 % berat
- Recovery aseton: 99,0 %
- Refluks Ratio Faktor: 1,2
- Tekanan kolom: 0,7 atm

Pada bagian ini akan dilihat pengaruh letak plate umpan terhadap refluks rasio untuk jumlah plate tertentu, sehingga dapat dilihat juga pengaruh jumlah plate terhadap refluks rasio dan beban reboiler.

Pada tahap unjuk kerja kolom, dipelajari pengaruh penambahan komposisi umpan terhadap refluks rasio dan beban reboiler untuk jumlah plate kolom dan letak plate umpan yang telah diketahui, serta recovery dan komposisi produk atas aseton yang tetap. Dapat dilihat juga pengaruhnya terhadap beban kondensor, laju molar produk atas dan refluks, komposisi aseton di produk bawah, dan recovery etanol ke produk bawah serta terhadap profil suhu, komposisi dan laju alir molar uap dan cairan tiap plate.

Ada dua macam perubahan komposisi umpan yang dianalisis yaitu:

1. Perbandingan mol aseton dengan mol etanol konstan (2,645) dan komposisi mol air konstan (0,89597) dimana perbandingan mol butanol dengan mol aseton antara 1 sampai dengan 3.
2. Komposisi mol etanol konstan (0,01126) dan komposisi mol air konstan (0,89597) dengan perbandingan mol butanol dengan mol aseton antara 1 sampai dengan 3 dan perbandingan mol aseton dengan mol etanol antara 2 sampai dengan 3,5.
2. Pengaruh Refleks Rasio terhadap Jumlah Plate Kolom dan Beban Reboiler

Gambar 4. Hubungan jumlah plate kolom dengan refleks rasio

Dari Gambar 4 refleks rasio pada jumlah plate kolom 120 dianggap sebagai refleks rasio minimum, hal ini karena perhitungan sangat sulit untuk mencapai koerseges pada saat penggunaan refleks rasio mendekati refleks rasio minimum dengan jumlah plate mendekati tidak berharga. Refleks rasio minimum yang diperoleh tersebut sebesar 9,54 sehingga refleks rasio yang digunakan untuk penentuan jumlah plate kolom sebesar 11,45.

Dengan memakai Gambar 4, pada refleks rasio tersebut diperoleh jumlah plate kolom 39. Dari jumlah plate kolom yang diperoleh tersebut disimulasikan kembali untuk mencari refleks rasio sesungguhnya dengan cara mencari letak plate umpan yang optimum kembali yaitu pada kebutuhan beban reboiler atau refleks rasio yang paling kecil.

Hasil yang diperoleh untuk kondisi yang dibicarakan dalam penelitian ini adalah:
- jumlah plate kolom = 39
- letak plate umpan = 29
- reboiler = 11,414
- beban kondensor = 2.749.662 kal
- beban reboiler = 2.826.382 kal

Umpam yang akan dipasahkan merupakan campuran cairan jenuh dengan konsposisi air yang besar, sehingga campuran tersebut merupakan larutan Aseton-Iltanol-n-Butanol yang encer. Hal ini mempengaruhi profil nafu, konsposisi uap dan cairan serta laju alir molar uap dan cairan tiap-tiap plate
(Andy dan Agus, 1999). Dengan besarnya komposisi air dalam umpan, dimana air merupakan komponen berat yang lebih sukar menguap dan sebagian besar air yang masuk akan keluar sebagai produk bawah, sedangkan komponen yang lain hanya sebagian kecil saja, hal ini menyebabkan komposisi cairan dari uap di bagian stripping tidak banyak berubah, relatif stabilitas cairan tidak banyak berubah, sehingga suhu kezestimban pada tiap plat juga tidak banyak berubah dan luas molar uap dan cairan tidak banyak berubah.

Unjuk Kerja Kolom
Pengaruh perubahaban komposisi umpan aseton terhadap beberapa variabel operasi dan profil kolom dapat dilihat pada Gambar 5 s.d Gambar 17, dimana sebagai dasar perhitungan adalah :

- komposisi aseton di produk atas = 99,5 % berat
- recovery aseton ke produk atas = 99,0 %
- jumlah plat kelom = 39
- letak plat umpan = 29
- tekanan operasi kelom = 0,7 atm

Ada dua macam perubahan komposisi umpan yang akan dilihat pengaruhnya.

1. Perubahan Komposisi Mol Aseton dalam Umpan dengan Perbandingan Mol Aseton/Etnol Konstan 2,645
Dengan bertambahnya komposisi mol aseton dalam umpan, dimana perbandingan mol aseton/etanol konstan dan komposisi mol air konstan, maka komposisi mol etanol akan naik dan komposisi mol butanol akan turun.

Gambar 5. Hubungan beban kondensor dan beban reboiler dengan komposisi mol aseton umpan pada perbandingan mol aseton/etanol konstan (2,645)

Gambar 5 menunjukkan kurva antara beban reboiler dan beban kondensor terhadap komposisi mol aseton dalam umpan untuk perbandingan mol aseton/etanol konstan 2,645. Beban reboiler dan beban kondensor merupakan fungsi linear dari komposisi mol aseton dalam umpan. Makin besar komposisi mol aseton dalam umpan, makin kecil beban reboiler dan beban kondensor. Hal ini karena dengan bertambahnya komposisi mol aseton dalam umpan, komposisi mol etanol dalam umpan yang merupakan komponen yang lebih sukar menguap menjadi turun, sehingga karena perbandingan komponen yang mudah menguap dengan yang sukar menguap menjadi besar akan mengakibatkan panas yang dibutuhkan semakin kecil sehingga beban reboiler dan beban kondensor menjadi turun.

Dengan bertambahnya komposisi mol aseton dalam umpan, maka komposisi mol etanol dalam umpan yang merupakan komponen yang lebih sukar menguap akan bertambah pula, sehingga dengan recovery aseton ke produk atas yang tetap akan menyebabkan recovery etanol ke produk bawah bertambah besar.

Gambar 6 s.d Gambar 10 menunjukkan profil suhu, komposisi uap dan cairan, serta luas uap dan cairan merupakan fungsi dari komposisi mol aseton dalam umpan untuk perbandingan mol aseton/etanol konstan 2,645. Kenaikan komposisi mol aseton dalam umpan akan menyebabkan terjadinya penurunan suhu kesetimbangan dan kenaikan komposisi mol aseton serta turunnya luas alir molar uap dan cairan pada tiap-tiap paitanya.

Gambar 6. Profil suhu tiap plat pada komposisi umpan dengan perbandingan aseton/etanol konstan (2,645)

MEDIA TEKNIK No.3 Tahun XXII Edisi Agustus 2000 No.ISSN 0216-3012
Gambar 7. Profil komposisi mol aseton cair tiap plate pada komposisi umpan dengan perbandingan aseton/etanol konstan (2,645)

Gambar 8. Profil komposisi mol aseton fase tiap plate pada komposisi umpan dengan perbandingan aseton/etanol konstan (2,645)

Gambar 9. Profil laju air molar cairan tiap plate pada komposisi umpan dengan perbandingan aseton/etanol konstan (2,645)

Gambar 10. Profil laju air molar tiap plate pada komposisi umpan dengan perbandingan aseton/etanol konstan (2,645)

2. Perbahaan Komposisi Mol Aseton dalam Umpan dengan Komposisi Mol Etanol Konstan 0,01126

Dengan bertambahnya komposisi mol aseton dalam umpan, sedangkan komposisi mol etanol dan komposisi mol air konstan, maka komposisi mol butanol akan turun.

Gambar 11. Hubungan beban kondensor dan beban reboiler dengan komposisi mol aseton umpan pada komposisi mol etanol konstan (0,01126)

Gambar 12 menunjukkan kurva antara beban reboiler dan beban kondensor terhadap komposisi mol aseton dalam umpan dengan komposisi mol etanol konstan 0,01126. Beban reboiler dan beban kondensor merupakan fungsi linear dari komposisi mol aseton dalam umpan. Makin besar komposisi mol aseton dalam umpan, makin kecil beban reboiler dan beban kondensor. Hal ini karena dengan bertambahnya komposisi mol aseton dalam umpan, komposisi mol butanol dalam umpan yang merupakan komponen yang lebih sulit menguap menjadi turun, sehingga
karena perbandingan komponen yang mudah menguap dengan yang sukar menguap menjadi besar akan mengakibatkan panas yang dibutuhkan semakin kecil sehingga beban reboiler dan beban kondensor menjadi turun.

Gambar 12. Hubungan recovery etanol dengan komposisi mol aseton umpan pada komposisi mol etanol konstan (0,01126)

Gambar 12 menunjukkan kurva antara recovery etanol menjadi produk bawah terhadap komposisi mol aseton dalam umpan dengan komposisi mol etanol konstan 0,01126, dimana dengan bertambahnya komposisi mol aseton dalam umpan, recovery etanol ke produk bawah akan berkurang. Dengan bertambahnya komposisi mol aseton dalam umpan, sedangkan komposisi mol etanol konstan, sehingga perbandingan komponen yang mudah menguap dengan yang sukar menguap bertambah besar dengan recovery aseton ke produk atas yang terap akan menyebabkan recovery etanol ke produk bawah berkurang.

Gambar 13. Profil suhu tiap plate pada komposisi umpan dengan komposisi mol etanol konstan (0,01126)

Gambar 14. Profil komposisi mol aseton fase cair tiap plate pada komposisi umpan dengan komposisi mol etanol konstan (0,01126)

Gambar 15. Profil komposisi mol aseton fase uap tiap plate pada komposisi umpan dengan komposisi mol etanol konstan (0,01126)
Gambar 16. Profil laju cairan tiap plate pada komposisi umpan dengan komposisi mol etanol konstan (0.01126)

Gambar 17. Profil laju uap tiap plate pada komposisi umpan dengan komposisi mol etanol konstan (0.01126)

KESIMPULAN
Dari hasil penelitian ini dapat disimpulkan beberapa hal sebagai berikut:

1. Pengaruh letak plate umpan dalam suatu kolom distilasi akan menurunkan harga refluks rasio dengan naiknya letak plate umpan sampai letak plate umpan terpentu dar kemudian naik kembali.

2. Untuk kolom asestor dipercaya:
 - Jumlah plate komponen = 39
 - Letak plate umpan = 29
 - Refluks rasio = 11.414
 - beban kondensor = 2.749.662 kal
 - beban reboiler = 2.826.382 kal

3. Pengaruh kenaikan komposisi mol aseton dalam umpan menyebabkan:
 - kenaikan laju molar produk atas dan penurunan laju molar refluks
 - penurunan refluks rasio, beban reboiler dan beban kondensor
 - kenaikan komposisi mol aseton di produk bawah
 - kenaikan recovery etanol untuk perbandingan mol aseston/etanol konstan 2.645
 - penurunan recovery etanol untuk komposisi mol etanol konstan 0.01126
 - penurunan suhu kesetimbangan, laju molar uap dan cairan tiap plate
 - kenaikan komposisi mOL uap dan cairan tiap plate

PENUTUP

DAFTAR PUSTAKA
Imartono, T., dan Samsul A. W., 1997, Pengukuran Kesetimbangan Uap-Cair Sistem Biner Etanol(1)-2-Propanol(2), Asetoni(1)-Etanol(2), dan Asetoni(1)-2-Propanol(2) pada Tekanan Atmosfir, Skripsi S-1, ITS, Surabaya

112 MEDIA TEKNIK No.3 Tahun XXII Edisi Agustus 2000 No.ISSN 0216-3012

Wiryanto, dan Teddy S. W., 1999, *Kesetimbangan Uap-Cair Sistem Biner Etanol(1)-Air(2), Aseton(1)-Air(2), Air(1)-n-Butanol(2)* dan *Kesetimbangan Cair-Cair Air(1)-n-Butanol(2) pada Tekanan Atmosfir*, Skripsi S-1, ITS, Surabaya.