ABSTRACT

Communication systems-often involve waveform manipulation either in time axis or frequency axis. It is necessary to simulate these waveforms for the sake of having better power efficiency or bandwidth efficiency. To analyze waveforms more easily and to produce attractive graphical displays, toolbox and special functions are very helpful. Application spon- sored by MATLAB For Windows (Windows 3.11 or Windows 95) are handy for this purpose and convenient for use on a wide program on it. The MATLAB programs used here are version 4.2c and utilize Signal Processing Toolboxes ver- sion 35b. In this paper, these programs are to simulate simple digital communication link with GMSK modulation.

Nowadays, GMSK modulation is officially used by mobile cellular telephony systems viz: GSM, DCS-1800, PCS-1900, cellular telephone system DECT, and wireless data packet system CDPD. The simulation is intended to show that GMSK modulation is very efficient in bandwidth. Here, communication link assumes that data sent are already in binary and experience Additive White Gaussian Noise. The modulator is an ordinary FM modulator with modulation index of 0.5 with Gaussian low pass filter. Demodulation process implement coherent detection, 1 bit differential detection and 2 bit differ- ential detection. The two last methods are noncoherent detections. With the use of MATLAB, all waveforms on each step can be evaluated clearly.

PENDEHAULAN

MODULASI BFSK DAN MSK

Modulasi dalam pengiriman data digital menjadi isyarat analog lebih singkat disebut kunci geseran (shift keying). Dasar GMSK adalah kunci geseran frekuensi biner (Binary Frequency Shift Keying, BFSK) dan kunci geseran minimum (Minimum Shift Keying, MSK), dengan bit informasi m1 dan 0 (m0) diintergemoskan ke dua frekuensi yang berbeda, namun dengan amplitudo yang tetap. Persamaan matematika modulasi BFSK fase berkas dapat dijelaskan sebagai:

\[
\begin{align*}
E(t) &= A \cos(\omega_c t - \Delta \omega t + \phi), & \text{for } n_1, \\
E(t) &= A \cos(\omega_c t + \Delta \omega t + \phi), & \text{for } n_2
\end{align*}
\]

A garang kedua frekuensi dapat dibedakan dengan baik, dilakukan pengukuran ortogonalitas terhadap kedua isyarat yang dirumuskan. Pengertian baru- fiah ortogonal adalah tegak lurus sehingga tidak mungkin isyarat yang satu diatur sebagaimana isyarat lainnya. Rumusan penyerutan untuk ortogonalitas FSK fase berkas [Proakis, 1987] adalah:

\[
\gamma = \sqrt{\Delta f_c / \Delta f_{0}}
\]

Agar stau modulasi BFSK dapat dideteksi ko- heren, ortogonalitas \(\gamma\) harus bermula nol, yang dapat terpenuhi bila \(2\Delta f_{0}\) adalah kelipatan buli \(\pi\), atau:

\[\frac{1}{\omega_{m}} = \frac{1}{\omega_{m}} + \frac{1}{\omega_{m}}\]
Dengan persamaan (3), lebar bidang gelombang BFSK dihitapkan akan menjadi yang paling sempit, bila dipilih α yang paling kecil. Dengan menganggarkan n = 1, diperoleh Δom < α/4.

Sistem BFSK dengan n = 1 ini disebut klasik garisan minimum (Minimum Shift Keying, MSK).

Bila ditinjau melalui persamaan modulasi frekuensi (FM), maka \(h(t) = \frac{2\Delta}{2T} \) menghasilkan simpangan frekuensi puncak \(\Delta f = \frac{1}{4T_0} = \frac{1}{2T} \). Dengan frekuensi indeks modulasi \(k = \frac{2\Delta f}{2\Delta t} \), maka modulasi BFSK dapat dianggap modulasi FM dengan indeks modulasi \(k \approx 0.5 \).

Modulasi MSK menerima sementara data digital dalam format NRZ, yaitu bit 0 diwakili oleh amplitudo +1 dan bit 1 diwakili oleh amplitudo -1 atau sebaliknya. Untuk selanjutnya, gunakan data ini disebut \(d(t) \). Dianggap sumber data memiliki pengiriman sejak interval \(k = 0 \). Pada interval t, frekuensi gelombang MSK menjadi \(\theta(t) = \alpha + \Delta \omega = \alpha + (\omega(2\pi/k)) \), bila \(k = 1 \) dan \(\alpha = \Delta \omega = \alpha - (\omega(2\pi/k)) \), bila \(k = -1 \).

Persamaan MSK dapat ditulis (Peeble, 1987) sebagai:

\[
\sin(\theta(t)) = A \cos(\omega(t) + h(t))
\]

\[
= A \cos(\omega(t) + \theta + \frac{d(t)}{2T})
\]

Dengan \(kT \leq t \leq (k+1)T \).

Bila \(\theta(t) \) merupakan fase aktur modulasi data pada frekuensi konstan \(\omega(2\pi/k) \), maka \(\theta \) mewakili sudut fase pada saat \(t = 0 \). Karena \(d(t) \) dapat berubah dari interval \(t \), interval, untuk menangkap fase pada waktu \(t \) dan fase sebelumnya \(\theta(t) \). Untuk ini setiap waktu \(t \) digambarkan pada Gambar 1.

\[
\text{Gambar 1 Listasan selisih fase pada MSK.}
\]

Pada interval ke-0, bila \(d_0 = 1 \), frekuensi \(\omega(t) \) bermasalah sebesar \(\Delta \omega = \pi/2kT \), sehingga fase aktur berubah (garis putus) sebesar \(\Delta \omega/T \). Pada titik a, bila \(d_0 = -1 \), fase bergerak ke titik (garbage peak).

Dari salah satu titik tersebut, fase kemudian akan bertambah atau berkurang secara linear sebesar \(+\pi/2 \) tergantung nilai \(d(t) \) bernilai +1 atau -1 pada interval berikutnya.

MODULASI GMSK

Menurut F. Amoroso (1980), pada keempat jenis modulasi sampai konstan yaitu QPSK, MSK, BFSK, dan SFSK, modulasi yang memiliki efisiensi lebar-bidang paling tinggi adalah MSK dengan lebar-bidang data tercapai 99% atau 1,18 Hz/bps.

Meskipun MSK memberikan lebar-bidang data tercapai 99% dan paling efisien, bebarapa upaya untuk meningkatkan lebih sempit, tapis pelewat-rendah harus membuat syarat (Lasser, 1997) antara lain:

a) memiliki lebar bidang sempit dan frekuensi panjang (cutoff) yang tajam untuk memaksimalkan komponen frekuensi tinggi,

b) memiliki tanggapan impuls dengan lenjakan (overshoot) yang kecil, untuk menghindari timpaan frekuensi seseat yang berlebihan, dan

c) memiliki pulsa kecepatan tapis yang mampu menjaga garisan fase 90° untuk menjamin proses de-modulasi koheren.

Bentuk tapis yang memerlukan adalah tapis pelWat-rendah Gauss (Gaussian LPT) dan modulasi garis ini disebut GMSK (Gaussian MSK).

Runtun data format NRZ diwakili tapis pelwa-rendah Gauss, kluarai dalam ko modulator MSK. Lebar tanggapan frekuensi tapis Gauss diatur terus dari perlakuan lebar-bidang dan durasi bit \(Bt_0 \).

\[
B = \frac{1}{10T_0}
\]

Untuk bentuk gelombang isokon dan tidak terpengaruh dan modulasi tapis berupa MUK. Bila \(B = \frac{1}{10T_0} \), maka bentuk gelombang masih tidak terpengaruh dan modulasi tapis berupa MUK. Bila \(B = \frac{1}{10T_0} \), pelewatan simbol tidak dapat mencapai posisi berikutnya pada waktu yang tepat (ukuran simbol membesar, sehingga pulsa berikan efek bantuan terhadap interferen antarsimbol (InterSymbol Interference, ISI)). Akibatnya diperlukan penambahan sampel konstan dan efisiensi spektrum yang tinggi, terjadi kenaikan pesat kesalahan bit. Untuk sistem GSM, \(B = 0.3 \) dan untuk sistem CDPP, \(B = 0.5 \).

Odefinisi efisiensi lebar-bidang \(\eta = \frac{\theta}{B} \) bps/Hz dan pesat bit \(R = \frac{B}{T_0} \) maka diperoleh \(\eta = \frac{\theta}{B} \)
Gambar 2 Diagram teralir perjalanan faze GMSK dan MSK.

Penerapan tapis Gauss sebelum modulasi meng-utah tanggapan penuh isyarat (satu simbol menduduki satu periode bit) menjadi tanggapan parsial (satu simbol melalui menduduki lebih dari satu periode bit). Pada Gambar 2 ditampilkan perjalanan faze ge-lombang MSK dan GMSK dengan \(BT = 0.5 \) bentur-turut dari luar ke dalam. Untuk MSK, \(S = 1; S = 0.75; S = 0.5; S = 0.3; \) dan \(S = 0.2 \). Fase pada MSK ditunjukkan dalam bentuk segi-tinga paling luar, yaitu tiap bit 1 akan menerima fase sebesar \(\pi/2 \) dan bit 0 menerima fase sebesar \(-\pi/2\). Keadaan ini terjadi bila ditransformasi tapis Gauss dengan \(BT = 0.5 \). Pada nilai \(BT = 5 \), bentuk fase sudah hampir tidak terpengaruh oleh efek penutupan Gauss, sedang-kan menurun nilai \(BT = 1 \) dan yang lebih kecil, yaitu nilai \(BT < 1 \) fase tidak lagi mencapai \(\pm \pi/2 \). Semakin kecil \(BT \), maka semakin sulit mendeteksi perubahan fase yang terjadi.

Pada Gambar 3 ditampilkan rapat spektrum daya GMSK untuk berbagai nilai \(BT_p \) (Rappaport, 1996). Spektrum daya MSK setara terhadap GMSK dengan \(BT_p = 0.5 \). Bila \(BT_p \) semakin kecil, maka cuping-sump (sidelobe) berkarakter dengan cepat. Untuk \(BT_p = 0.5 \), puncah dari cuping kedua berada lebih dari 30 dB di bawah cuping-utama \(-\pi/2 \), sedangkan untuk \(BT = 0.5 \) (MSK), puncah cuping kedua hanya berada 20 dB di bawah cuping-utama.

Gambar 3 Rapat spektrum daya dari isyarat GMSK [Rappaport, 1996].

Pada Tabel 1 diberikan ukuran lebarbanding daya tercakup untuk MSK dan GMSK menurut Murata dan Hirade dalam satuan Hz/By [Rappaport, 1996]. Dapat dibandingkan bahwa untuk daya tercakup 99% lebar-bandig GMSK dengan \(BT = 0.5 \) hanya 1.04 Hz/By.

Tabel 1. Lebarbanding daya tercakup dalam isyarat GMSK dan MSK [Rappaport, 1996]

<table>
<thead>
<tr>
<th></th>
<th>90%</th>
<th>99%</th>
<th>99.9%</th>
<th>99.99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 GMSK</td>
<td>0.52</td>
<td>0.79</td>
<td>0.99</td>
<td>1.22</td>
</tr>
<tr>
<td>0.25 GMSK</td>
<td>0.57</td>
<td>0.86</td>
<td>1.09</td>
<td>1.37</td>
</tr>
<tr>
<td>0.5 GMSK</td>
<td>0.69</td>
<td>1.04</td>
<td>1.32</td>
<td>2.08</td>
</tr>
<tr>
<td>MSK</td>
<td>0.78</td>
<td>1.20</td>
<td>2.55</td>
<td>6.00</td>
</tr>
</tbody>
</table>

TIPIS GAUSS

T.S.Rappaport [1996] dan Thierry Turtlesi [1996], memberikan rumus tanggapan impuls tapis Gauss sebagai:

\[
h_c(t) = \sqrt{\frac{\pi}{\alpha}} \exp \left(-\frac{\pi^2 t^2}{\alpha^2}\right)
\]

\[
\approx \frac{\pi}{\sqrt{2 \ln 2}} B \exp \left(-\frac{\pi^2 B^2 t^2}{2 \ln 2}\right)
\]

(B)
dan fungsi alih diberikan sebagai:

\[H_v(f) = \exp(-\alpha |f|) \]

(7)

dengan \(\alpha = \frac{2 \ln 2}{B} \) dan \(B \) adalah lebar bandwidth 3 dB taps Gauss.

Gambar 4 (a) Tanggapan impuls taps Gauss dengan \(BT_1 = 1 \) (TS = 3,69 μs).

(b) Tanggapan frekuensi taps Gauss dengan \(BT_1 = 1 \) (TS = 3,69 μs).

Gambar 4a merupakan tanggapan impuls taps Gauss dengan nilai \(BT_1 = 1 \), dengan durasi bit \(T_b = 3,69 \) μs dan \(B = 81300 \) kHz. Dengan masukan berupa data biner berarti pesat bit \(R \) sebanyak dengan \(1/T_b \) \(= 7,71,003 \) kbps (standar GSM). Gambar 4b merupakan tanggapan frekuensi taps Gauss yang diperoleh melalui proses FFT dengan frekuensi penampakan \(f_r = 10 \) MHz dan 32768 sampel.

Suatu isyarat GMSK dapat dinyatakan [Laster, 1997] sebagai:

\[x_{\text{GMSK}}(t) = \sqrt{2E_b} T \cos \left[2\pi f_d t + \theta(t) + z(t) \right] \]

(8)

dengan \(E_b \) adalah energi per bit, \(T \) adalah durasi bit, \(z(t) \) merupakan suatu fase sembarangan, \(\theta(t) \) adalah frekuensi pembawa.

Fase termodulasi \(\theta(t) \) adalah sebesar:

\[\theta(t) = \sum_{i} m_i h \int_{-\infty}^{t} g(u) du \]

(9)

dengan data NRZ \(m_i \) bernilai \(\pm 1 \). Indeks modulasi \(h = 0,5 \) membuat perubahan fase maksimum sebesar \(\pi/2 \) radian setiap interval data. Tanggapan taps Gaus terhadap pulsa kotak dinyatakan dalam:

\[g(t) = h(t) \cdot \text{rect} \left(\frac{t}{T} \right) \]

(10)

MODULATOR DAN DEMODULATOR GMSK

Modulator GMSK secara sederhana dibangkitkan oleh osilator FM yang memiliki indeks modulasi 0,5. Modulator GMSK ditunjukkan pada Gambar 6.

Demodulasi dapat dilakukan secara koheren atau nonkoheren. Demodulasi koheren membutuhkan isyarat asli. Dalam simulasi komputer, diasumsikan isyarat asli telah dibangkitkan kezali dengan sempurna sehingga tidak perlu dibuat untainya. Demodulator koheren diperlihatkan pada Gambar 7. Seluruh proses deteksii fase yang dalam praktek umumnya dilakukan oleh unit PLL (Phase Locked Loop) atau sejenisnya, diwakili oleh persamaan matematika arcustangen atau isyarat \(I \) (in-phase) dan \(Q \) (quadrature).

Gambar 6. Modulator GMSK [Turletti, 1996]

Demodulator nonkoheren tidak memerlukan isyarat acau untuk memisahkan isyarat GMSK menjadi isyarat 1 dan Q. Demodulator nonkoheren yang steting digunakan adalah detektor diferensial 1 bit dan 2 bit. (Elouzbi, 1990; Kor, 1992; Vaisheuy, 1993; Swiuit, 1994; Laster, 1997).

Diagram kotak detektor diferensial ditampilkan pada Gambar 8.

Gambar 8 Demodulator GMSK nonkoheren (Laster, 1997).

Secara sistematis, deteksi diferensial pada Gambar 8 dapat ditulis sebagai:

\[v(t) = \frac{1}{2} Re \{ C(t) z(t - \tau) \} \]

(11)

dengan \(\tau \) adalah tundaan sembarang yang biasanya kelipatan interval bit \(T \), sedangkan \(C \) adalah konstante nilai kompleks yang tergantung pada tundaan \(\tau \) dan \(* \) menandakan proses konjugasi. Tanggapan tapis peletah-rendak diwakili oleh ungkapan \(\frac{1}{2} Re \). Dengan \(Re \) adalah operator bagian real dan \(Im \) adalah operator bagian imajiner.

Untuk demodulasi diferensial 1 bit, \(\tau = T \) 1 bit dan \(C = -j \) (gener fase -90°), sehingga persamaan menjadi:

\[v_{11}(t) = \frac{1}{2} Re \{ j z(t) z(t - T) \} \]

(12)

Pada demodulasi diferensial 2 bit, \(\tau = T / 2 \) 2 bit dan \(C = -j \), sehingga persamaan menjadi:

\[v_{12}(t) = \frac{1}{2} Re \{ z(t - 2T) \} \]

(13)

METODE SIMULASI

Simulasi modulasi GMSK dilakukan dengan program MATLAB. Program simulasi dibuat dengan menuliskan function dalam berkas berikut:

```matlab
function [y] = modulasiGMSK(t, f0, fM, T, L, M, N, b)

% Simulasi modulasi GMSK
% t: waktu (time)
% f0: frekuensi 0 (carrier frequency)
% fM: frekuensi M (modulation frequency)
% T: interval bit (bit period)
% L: panjang tanda (symbol length)
% M: jumlah tanda (number of symbols)
% N: jumlah sampel (number of samples)
% b: bina (binary)

y = zeros(1, N);  
for i = 1:N
    y(i) = modulasiGMSK(t(i), f0, fM, T, L, M, N, b);
end
end
```

Pada simulasi, data yang digunakan adalah versi 4.2c.1 yang berjalan di atas sistem operasi Windows 3.11 atas Microsoft Windows 5.5. Program simulasi menampilkan rama komunikasi sederhana sekarang masukan data bina, modulator GMSK, kanal AWGN dan demodulator koheren serta nonkoheren. Pada MATLAB versi 4.2c.1 terdapat lemahnam berupa tidak dilunyarnya peta tanda urutan huruf, sehingga program untuk masing-masing demodulator terpaksa dibuat terpisah karena keterbatasan ruang dalam jendela. Pada detektor koheren, dianggap frekuensi pembawa telah dibatikkan kembali secara sempurna. Baik pada detektor koheren maupun nonkoheren, dianggap tidak terjadi tundaan waktu sehingga isyarat yang diterima dicuplik pada posisi yang paling baik.

Penggabungan diagram kotak dilakukan melalui penggunaan fungsi uicontrol() dalam fasilitas Handle Graphics yang ditawarkan oleh MATLAB.

Dalam simulasi digunakan bit yang berduraian \(T_b = 3,69 \mu s \) (standart GSM) dan frekuensi penciptakan 40 MHz (seteng waktu 25 ns), yang menghasilkan 48 sampel untuk mewakili satu bit (pembulatan ke atas). Frekuensi penciptakan yang sama berlaku untuk semu bagian simulasi.

PEMBAHASAN PROGRAM SIMULASI

Simulasi MATLAB rantai komunikasi dengan modulador dan demodulator GMSK koheren ditampilkan pada Gambar 9 serta demodulator nonkoheren pada Gambar 10. Data masukan berta dapat ditulis secara manual atau dibatikkan secara acak. Nilai \(B_{T} \) pada tapis GMS dapat distur dari 0,1 sampai 150. Untuk \(B_{T} \) lebih besar dari 150, boleh bil(\(t \)) sudah lebih sempit dari 3\(T_b \), sehingga penciptakan hanya menghasilkan kurang dari 3 sampel. Dengan frekuensi penciptakan 40 MHz, frekuensi pembawa \(f_c \) maksimum yang bisa diwakili dengan baik adalah 20 MHz. Hal ini berkaitan dengan program ujicoba rapih :frekuensi pembawa pada ujicoba modulasi yang menggunakan fungsi FFT). Mesarut aturan FFT, frekuensi maksimum yang dapat dihasilkan adalah beberapa frekuensi penciptakan. Variabel linie yang dapat diubah adalah amplitudo pembaran dan boleh besar data AWGN.

Proses AWGN dibatikkan oleh fungsi

\[X = \text{randn}(m, n) \]

(14)

dengan \(\text{randn} \) adalah data deruan dan \(a \) berupa vektor dengan ukuran (m,n).

MEDIA TEKNIK Ns.3 Tahun XXI Edisi Agustus 1999 No.ISSN 0216-3512 53
Gambar 9. Simulasi modulator-demodulator GMSK koheren dengan MATLAB.

Gambar 10. Simulasi modulator-demodulator GMSK nonkoheren dengan MATLAB.
Pada Gambar 11 ditampilkan keluaran integrator dan tapis Gauss dengan $B = 0.3$ untuk data biner tersendi diferensial 1100100111. Keluaran ini tidak lain merupakan fase modulasi GMSK. Bila digunakan modulasi MSK, tampilan fase menjadi segitiga sempurna dengan ujung-ujungnya benrali kelipatan $\pi/2$. Dengan dikennakan tapis pelewat-rendah Gauss, komponen frekuensi menjadi terpangkagrama dan ujung fase tidak lagi dapat mencapai $\pi/2$. Pada Gambar 12 ditampilkan perbandingan PSD GMSK ternormalisasi dengan berbagai B terhadap PSD MSK. Tampilan PSD dihasilkan oleh fungsi $\psi_{\beta}(\cdot)$ dengan masukan binear acak 1024 sampel, frekuensi pembawa 10 MHz dan frekuensi penculikan FFT 40 MHz. Pada kurve pada huar ke dalam ditunjukkan sepuluh isyarat GMSK dengan B tapis Gauss berturut-turut sebesar $\infty; 5; 3; 1.07; 0.5; 0.4; 0.3; 0.2; dan 0.1$.

Gambar 11 Keluaran integrator dan tapis Gauss $B = 0.3$ untuk data biner tersendi diferensial 1100100111.

Gambar 12 Perbandingan PSD GMSK ternormalisasi untuk berbagai B dengan MSK.

Pada Gambar 12, cuping-sampling I pada modulasi MSK berada -24.3 dB di bawah cuping-utama, sedangkan pada GMSK dengan $B = 0.3$ cuping-sampling I berada -42.2 dB di bawah cuping-utama. Perbedaan sekitar 17.9 dB ini berarti pengurangan daya sampai sekitar 62 kali lebih rendah. Cuping-sampling I pada modulasi MSK dan GMSK muncul kira-kira pada frekuensi normal 1 yang tidak lain sama dengan 270,833 kHz. Frekuensi ini merupakan pesat $R = 1/4c$.

Peryarat sistem GSM mengijinkan lebarband isyarat termodulasi hanya 200 kHz yang dapat diperikan pada saat dengan frekuensi normal 0,2 MHz - 0 MHz”$\delta = 0.728$. Pada benti ini, daya isyarat MSK adalah -21.3 dB dalam bawah cuping utama, namun GMSK dengan $B = 0.3$ memiliki daya -31.6 dB di bawah cuping utama, sehingga selisihnya sekitar -10 DB (10 kali lebih rendah). Selain cuping-sampling berkurang, pada Gambar 12 juga dapat dihitung semakin kecil B, maka lebarband spektrum juga menyempit.

Pada Tabel 2 ditampilkan nilai persen rasio keluaran bit pada simulator GMSK versi 1 terhadap daya rasio daya rasio dan daya AWGN (CN) dalam dB untuk berbagai nilai B. Percobaan dilakukan dengan mengikinkan 1001 data biner acak satu kali dan terhadap diri ini, dikemukan gangguan AWGN dengan daya berputur-turut sebesar 0.005; 0.001; 0.002; 0.005; 0.012; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; dan 1 watt. Perbandingan daya isyarat terhadap daya AWGN akan menghasilkan nilai rasio seperti pada Tabel 2. Wali yang diulang adalah hasil rata-rata dari 3 kali percobaan.
<table>
<thead>
<tr>
<th>Rasio CN (%)</th>
<th>BTh=0,3 (%)</th>
<th>BT=0,5 (%)</th>
<th>BT=0,7 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dif1-1</td>
<td>Dif1-2</td>
<td>Dif2-1</td>
<td>Dif2-2</td>
</tr>
<tr>
<td>30.00</td>
<td>24.6</td>
<td>41.6</td>
<td>0</td>
</tr>
<tr>
<td>23.00</td>
<td>24.0</td>
<td>40.0</td>
<td>24.0</td>
</tr>
<tr>
<td>20.00</td>
<td>20.0</td>
<td>20.0</td>
<td>0</td>
</tr>
<tr>
<td>16.00</td>
<td>25.0</td>
<td>20.0</td>
<td>0</td>
</tr>
<tr>
<td>13.00</td>
<td>22.5</td>
<td>22.5</td>
<td>0</td>
</tr>
<tr>
<td>10.00</td>
<td>24.6</td>
<td>20.0</td>
<td>0</td>
</tr>
<tr>
<td>8.00</td>
<td>20.0</td>
<td>20.0</td>
<td>0</td>
</tr>
<tr>
<td>6.00</td>
<td>23.0</td>
<td>23.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Besarnya nilai BT ristimum yang dapat dideteksi oleh masing-masing demodulator ditunjukkan dengan cara mengikinkan 1000 data bina ac asal sebanyak 3 kali dengan data gangguan AWGN sebesar nol dan nol BT minimum yang menghasilkan persen kesalahan nol. Dari percobaan diperoleh bahwa untuk detektor koheren, BT minimum adanya 0.195; untuk detektor diferensial 1 bit, BT minimum adalah 0.255; dan untuk detektor diferensial 2 bit, BT minimum adalah 0.295. Nilai BT minimum ini dipengaruhi oleh jenis tapas pelewat -rendah yang digunakan pada demodulator tersebut.

KESEMPURNAAN DAN SARAN

1. Modulasi GMSK merupakan pengembangan modulasi MSK melalui penambahan tapas Gauss pada bagian pramodulasi dengan lebar bidang tapas B, < 1/4B.
2. Modulasi GMSK membuat cacing-samping tapas spektrum daya MSK menjadi sangat terepadan dan lebar bidang frekuensi menjadi lebih sempit.
3. Tapis Gauss memungkinkan komponen frekuensi tinggi, melintang bidang-lawan (bandpass) yang sangat sempit dan membuat ukuran simbol melebar. Hal ini mengakibatkan munculnya ISI.

DAFTAR PUSTAKA

56 MEDIA TEKNIK No.3 Tahun XXI Edisi Agustus 1999 No ISSN 0216-3012