ABSTRACT

This study aims to investigate the effects of pre-loading and shot peening on the fatigue resistance of tube with SCHNMOD. The specimens were given two sequential heat treatments, i.e. 860°C for 10 minutes followed by oil quench and 600°C for 2 hours then air-cooled. The specimens were polished to a certain grade before testing to produce mirror-like finish. The specimens were classified into five treatments; one set of polished ones, two sets of pre-loaded and shot peened ones and two sets of shot peened ones. Shot peening process was performed for two different peening intensities namely 0.005A and 0.007A. The results of surface roughness test show that shot peened specimens increase their roughness about 60 times and 35 times, for 0.005A and 0.007A respectively, compared to that of polished ones. The depths of maximum hardness' are reached about 50μm and 55 μm beneath the surfaces of 0.005A and 0.007A shot peened specimens respectively. Those hardness' increase about 11.9% and 17% than that of unpeened specimens. The static tensile tests were performed using a servo hydraulic testing machine MTS 810 and the fatigue tests were performed using a servo bending testing machine. The results of static tensile tests indicate that ultimate strengths (σ_u) increase about 3.9% and 7.2% and yield strengths (σ_y) about 7.8% and 10% for 0.005A and 0.007A intensities of peening respectively compared to unpeened specimens. S-N curves of fatigue test show that shot peening increases fatigue stress than that of unpeened. At the level 2 x 10^9 cycles, fatigue stresses of pre-loaded and shot peened specimens increase about 11.7% and 12.5% for 0.005A and 0.007A intensities of peening. Fatigue stresses of shot peened specimen increase about 17.9% and 17% for the same intensities.

PENGANTAR

1 Drs. Slamet Karyono, MT., Staf Pengajar Jurusan FT Mesin, FT - Universitas Negeri Yogyakarta
2 Ir. Junarsi, Ph.D., Staf Pengajar Jurusan Teknik Mesin, FT - Universitas Gadjah Mada

MEDJљ T€ÎN€K No.2 Tahun XXII Erist Mei 2001 No ISSN 0216-3012
a. Proses Shot Peening

Shot peening merupakan proses penembakan atau penumbukan bola-bola (baja atau gelas) yang berdasar relatif kecil pada logam secara berulang dan progressive. Proses ini akan menciptakan tekanan sisa tekan (compressive residual stress) di seluruh permukaan benda yang besarnya sama dan merata, serta berubah terhadap kedalaman/ketebalan benda. Tegangan sisa ini berguna untuk meningkatkan kekuatan lebih dari material, mencegah terjadinya stress corrosion cracking, dan menghambat fatigue corrosion.

Berdasarkan medannya, shot peening dibagi menjadi 2 macam yaitu dry shot peening dan wet shot peening. Dry shot peening merupakan proses shot peening dengan menggunakan penembakan partikel-partikel yang relatif berat seperti baja dengan intensitas yang tinggi melalui media udara yang bertekanan. Sedangkan wet shot peening merupakan penembakan partikel yang relatif ringan seperti glass bead dan alumina pada intensitas yang lebih rendah melalui media air yang bertekanan. Untuk mendapatkan hasil yang optimum ada beberapa variabel yang harus diperhatikan seperti kerapatan, intensitas peening, ukuran bola penembak (shot), waktu jenuh, dan sifat-sifat mekanik material.

Intensitas peening atau energi impak tergantung pada kecepatan, kekerasan, ukuran, berat, dan sudut penembakan shot. Intensitas ditunjukkan dengan besarnya tinggi yang disebut dengan melalui equation 2:

\[E = \frac{W}{A} \]

dimana:
- \(W \): energi impak
- \(A \): area penembakan

Waktu jenuh (time saturation) adalah waktu yang diperlukan untuk terjadinya tinggi tersebut pada waktu yang diperlukan untuk terjadinya tinggi tersebut. Dalam hal ini, waktu jenuh adalah waktu yang dibutuhkan untuk terjadinya tinggi tersebut pada waktu yang diperlukan untuk terjadinya tinggi tersebut.

\[T = \frac{A}{W} \]

Dimana:
- \(T \): waktu jenuh
- \(A \): area penembakan
- \(W \): energi impak

b. Pembelajaran Sifat

Penguatan lemah dengan menggunakan level tegangan maksimum dan minimum yang tetap dinamakan tegangan amplitudo tetap. Tegangan model ini dapat dianalisa menjadi tiga tipe yaitu tegangan berulang penuh (completely reversed stress) dengan \(\sigma_m = 0 \) dan \(\Delta \sigma = -1 \), tegangan rata-rata tidak sama dengan nol (nonzero mean stress) \(\sigma_m \neq 0 \) dengan harga -1 \(\leq \Delta \sigma \leq 1 \), dan tegangan terhadap (zero to tension stress) dengan \(\sigma_m = 0 \) sehingga \(R = 0 \).

Penguatan dengan menggunakan metal forming yang telah dilaksanakan dalam penelitian ini menggunakan model pertama yaitu amplitudo penuh berulang sebagaimana terlihat pada gambar.

\[(\sigma_m = 0, \Delta \sigma = -1) \]

Gambar 1. Grafik tegangan berulang penuh:

\[(\sigma_m = 0, \Delta \sigma = -1) \]

Besaran-besaran yang disajikan pada gambar di atas dapat diterangkan sebagai berikut:

- \(\sigma_{max} \) : tegangan maksimum
- \(\sigma_{min} \) : tegangan minimum
- \(\Delta \sigma \) : kisar tegangan (stress range)
- \(\sigma_0 \) : tegangan rerata (mean stress)
- \(\sigma_{max} \) : Amplitudo tegangan (stress amplitude)
- \(R \) : perbandingan tegangan (stress ratio)
- \(A \) : perbandingan amplitudo (amplitude ratio)

\[R = \frac{\sigma_{max}}{\sigma_{min}} \]

\[A = \frac{\sigma_{max}}{\sigma_{max} + \Delta \sigma} \]

\[A = \frac{1}{1 + \Delta} \]

\[A = \frac{1}{1 + R} \]
Spesimen yang dikenali bebon skikis akan membentuk retak lebih yang kelumian akan diikuti dengan kerusakan total. Kurva S-N merupakan kurva yang disusun berdasarkan besarnya tegangan yang diterima spesimen akibat pelebaran terhadap banyaknya putaran sampai spesimen itu putus (Np). Jumlah putaran sampai terjadinya putah akan sangat bergantung terhadap besarnya level tegangan yang diperungkapkan. Jika level tegangan yang digunakan tinggi, maka jumlah putaran sampai terjadinya kerusakan akan lebih kecil, sebaliknya untuk level tegangan yang rendah, jumlah putaran sampai terjadinya kerusakan akan lebih besar. Bahkan untuk level tegangan rendah pada daerah batas kekuatan retak tidak akan didapat kerusakan spesimen. Level tegangan yang akan digunakan dalam pengujian ini berkisar antara 20% - 80% Npmax. Sedangkan untuk penayangan data dalam kurva S-N menggunakan plot log-log dengan menggunakan rumus:

$$\sigma_c = A N_p^b$$

(2)

Dimana:
$$\sigma_c =$$ amplitudo tegangan
$$N_p =$$ Jumlah putaran sampai spesimen putus
$$A$$ dan $$B$$ merupakan konstanta bahan.

Dalam bentuk yang agak berbeda Jiao (1995) memberikan rumus sebagai berikut:

$$N_p = C$$

(3)

Metode Penelitian

Bahan penelitian adalah baja pors SNCM431 produk Bohler dengan komposisi kimia 0.34% C, 0.30% Si, 0.60% Mn, 1.50% Cr, 0.20% Mo, 1.50 Ni dalam kondisi belum dikeraskan (prehardened material). Bahan ini kemudian dikeraskan dengan mesin untuk membuat 2 macam spesimen uji yaitu spesimen uji tarik menurut standar JIS Z 2201 No.14A dan spesimen uji lelah untuk rotary bending. Heat treatment dilakukan dengan quench pada suhu 860°C holding time 10 menit, dan media pencelupan oli. Selanjutnya dilakukan tempering pada suhu 600°C dengan holding time selama 2 jam dan media pendinginan udara ruangan. Pemolesan (polishing) dilakukan pada semua spesimen sampai mencapai derajat kehalusan tertentu. Spesimen uji tarik dikelompokkan menjadi 3 bagian yaitu spesimen asli hasil pemolesan, di-shot peening dengan intensitas 0.005A dan 0.007A. Spesimen uji rotary bending dikelompokkan menjadi 5 bagian yaitu spesimen asli hasil pemolesan, dikenal pembebanan awal dan di-shot peening dengan intensitas 0.005A dan 0.007A serta langsung di-shot peening dengan intensitas 0.005A dan 0.007A.

Pengujian dilakukan dengan mesin rotary bending dilakukan pertama kali pada spesimen permukaan yang dipoles. Pembebanan dimulai dengan beban tinggi yaitu sekitar 80% tegangan lulus spesimen uji tarik permukaan yang dipoles dan secara bertahap menurut sampai beban terendah yaitu sekitar 20% tegangan lulusnya. Data setiap pembebanan dan jumlah siklus patah dicatat. Pengujian berikutnya dilakukan pada spesimen dengan pembebanan awal dan shot peening. Spesimen ini dibiarkan sama dengan langkah diatas. Perbedaannya terletak pada setiap data pembebanan di atas dilakukan hanya 25% siklus patahnya. Spesimen ini kemudian dilepas dan di-shot peening dengan intensitas 0.005A dan 0.007A. Setelah proses shot peening, pengujian dengan menggunakan mesin rotary bending dilanjutkan dengan pembebanan yang sama persis dengan pembebanan sebelum dilakukan proses shot peening. Pengujian yang terakhir adalah pengujian spesimen shot peening. Pada prinsipnya pengujian ini sama dengan pengujian yang pertama. Perbedaannya hanya bahwa data tegangan lulus yang dipakai adalah hasil dari pengujian tatar statis spesimen uji tarik yang di-shot peening pada intensitas 0.005A dan 0.007A.

HASIL DAN PEMBAHASAN

Uji Tarik Statik

Hasil pengujian tarik untuk berbagai perlakuan yang berupa $$\sigma_{ut}$$ dan $$\sigma_{yield}$$ diberikan oleh grafik berikut

![Grafik Kekuatan Tahan](image)

Gambar 2. Grafik tegangan tahan bahan dengan variasi perlakuan
Dari grafik terlihat bahwa ada peningkatan tegangan ultimate dan yield yang berkaitan dengan variasi intensitas peening bila dibandingkan dengan bahan yang tidak mendapat perlakuan. Peningkatan pada tegangan yield sekitar 7,8% pada intensitas peening 0,005A dan sekitar 10% pada intensitas peening 0,007A. Pada tegangan ultimate, peningkatan terjadi sekitar 3,9% pada intensitas peening 0,005A dan sekitar 7,2% pada intensitas 0,007A. Hasil pengujian di atas menunjukkan bahwa tegangan sua tekan proses shot peening sangat berperan di dalam mengimbangi tegangan tarik yang dibekalkan pada bahan, sehingga tegangan yield dan ultimate bahan dapat meningkat.

Uji Kekerasan Permukaan

Gambar 3 menunjukkan bahwa nilai kekerasan hasil proses shot peening meningkat tajam bila dibandingkan dengan bahan awal yang hanya dilakukan dengan proses pemolesan saja. Penyebab utama terjadinya kekerasan ini adalah terjadinya deformasi plastis pada permukaan bahan yang diaktifkan oleh benturan shot sehingga membentuk lekukan.

Dari grafik dapat dilihat bahwa nilai kekerasan permukaan yang dihasilkan dari proses shot peening bergantung pada intensitas yang dipakai. Semakin tinggi intensitas peening yang dipakai akan menghasilkan kekerasan permukaan yang semakin rendah. Hal ini dapat diterangkan bahwa kerapatan burir pada intensitas yang lebih tinggi sebagai penyebab lebih halusnya permukaan bahan. Peningkatan kekerasan permukaan sekitar 60 kali dan 36 kali masing-masing untuk intensitas 0,005A dan 0,007A bila dibandingkan dengan kekerasan permukaan awal.

Gambar 3. Grafik kekerasan permukaan

Uji Kekerasan

Kesimpulan kekerasan pada permukaan yang dikonsumi proses shot peening bervariasi tergantung dari besarnya intensitas yang digunakan. Gambar 4 menunjukkan bahwa intensitas yang semakin tinggi akan membesarkan pengaruh peeesan pengenceran permukaan yang semakin tinggi pada. Data gambar menunjukkan bahwa peningkatan kekerasan terbesar terjadi pada intensitas peening 0,007A yaitu sekitar 17% pada kedalaman 55μm.

Gambar 4. Kekerasan mikro penetrapan melintang spesimen shot peening

Sudahkan pada intensitas 0,005A peningkatan kekerasan terjadi sekitar 11,9% pada kedalaman 50μm. Berdasarkan pengukuran perlakuan bahan dari prehardened material sampai proses peening panas, data kekerasannya disajikan pada tabel 1.

Tabel 1. Data perubahan kekerasan bahan akibat perlakuan panas

<table>
<thead>
<tr>
<th>Raw material</th>
<th>Quenching</th>
<th>Tempering</th>
</tr>
</thead>
<tbody>
<tr>
<td>373 VHN</td>
<td>642 VHN</td>
<td>323 VHN</td>
</tr>
</tbody>
</table>

Uji Kelelahan Bahan

Dari grafik pada gambar 5(a) dapat dilihat bahwa kurva S-N untuk bahan yang dikonsumi pembebasan awal 25% dari siklus panah bahan aisi dan di-shot peening meningkat kecenderungan emur lebih yang meningkat. Penghitungan dengan menggunakan nilai-nilai konstanta dari persamaan grafik yang disajikan pada tabel 2 menunjukkan peningkatan tetap sekitar 11,7% dan 12,5% pada siklus 2 x 10⁷ masing-masing untuk intensitas 0,005A dan 0,007A bila dibandingkan dengan bahan awal. Sebagai pembandingan, grafik pada gambar 5(b) menunjukkan peningkatan tekanan sekitar 17,9% dan 17% pada bahan yang langsung di-shot peening dengan intensitas yang sama dengan di atas. Hal ini
menunjukkan bahwa pembebanan awal akan berakibat pada penurunan tegangan pada siklus lebih bahan bila dibandingkan dengan bahan yang langsung di-shot peening. Dengan mengambil referensi peningkatan tegangan dari bahan asli ke bahan yang di-shot peening langsung sebagai peningkatan 100%, maka penurunan yang ditimbulkan oleh pembebanan awal sekitar 35% dan 27% masing-masing pada intensitas 0,005A dan 0,007A. Kecerminan penurunan ini dapat dilihat pada gambar 5.(c) dan 5.(d).

Gambar 5. (a) Grafik peningkatan umur bahan yang diambil pembebanan awal. (b) Grafik peningkatan umur bahan yang langsung di-shot Peening. (c) Grafik peningkatan umur bahan pada shot peening 0,005A. (d) Grafik peningkatan umur bahan pada shot peening 0,007A.

Tabel 2. Konstanta S-N dari berbagai macam variasi perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>(\sigma_t = A N^{\beta})</th>
<th>B</th>
<th>M</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q+T</td>
<td>16112</td>
<td>-0.0953</td>
<td>9.7993</td>
<td>4.10^{1}</td>
</tr>
<tr>
<td>Q+T+PA25%+SP0,05A</td>
<td>1495</td>
<td>-0.0825</td>
<td>11.652</td>
<td>2.10^{2}</td>
</tr>
<tr>
<td>Q+T+PA25%+SP0,007A</td>
<td>1533,3</td>
<td>-0.0838</td>
<td>11.359</td>
<td>3.10^{2}</td>
</tr>
<tr>
<td>Q+T+PA0,05A</td>
<td>1329,7</td>
<td>-0.0797</td>
<td>12.529</td>
<td>1.10^{3}</td>
</tr>
<tr>
<td>Q+T+SP0,007A</td>
<td>1418,9</td>
<td>-0.0757</td>
<td>12.059</td>
<td>3.10^{3}</td>
</tr>
</tbody>
</table>

MEDIA TEKNIK No.2 Tahun XXIII Edisi Mei 2001 No.ISSN 0216-3012 53
KESIMPULAN

Dari hasil penelitian dan pembahasan dapat disimpulkan sebagai berikut:
1. Shot peening berpengaruh pada tegangan ulang dan ultimatum bahan. Hasil Pengujian menunjukkan terdapat peningkatan tegangan ulang sekitar 7,8% dan 10% serta peningkatan tegangan ultimatum sekitar 3,9% dan 7,2% masing-masing pada intensitas peening 0,005A dan 0,007A bila dibandingkan dengan bahan sasis.
2. Shot peening meningkatkan kekerasan permukaan bahan. Kekerasan permukaan terbesar terjadi pada intensitas peening 0,005 A.
3. Terdapat peningkatan kekerasan pada kulit bahan yang dikenai proses shot peening. Peningkatan kekerasan terbesar terjadi pada intensitas peening 0,007 A yaitu sekitar 17% pada kedalaman 35 µm. Sedangkan pada intensitas peening 0,005 A terdapat peningkatan kekerasan sekitar 11,9% pada kedalaman 50 µm.
4. Pengujuan dengan rotary bending pada bahan yang dikenai pemanasan awal 25% dari sikit patah menunjukkan peningkatan tegangan patah sekitar 11,7% dan 12,5% pada sklis 2 x 10^9 masing-masing untuk intensitas peening 0,005 A dan 0,007 A. Sedangkan untuk bahan yang tidak dikenai pemanasan awal menunjukkan peningkatan sekitar 17% dan 17% untuk sklis dan intensitas yang sama dengan di atas. Dengan mengambil referensi peningkatan tegangan dari bahan asli ke bahan yang di-shot peening langsung sebagai peningkatan 100%, pembebanan awal menurunkan tegangan patah sekitar 35% dan 27% masing-masing pada intensitas peening 0,005 A dan 0,007 A.

DAFTAR PUSTAKA

