ABSTRACT

This research is aimed to estimate the effects of money supply, real income, exchange rate, real government expenditure and policy of oil price increasing on inflation in Indonesia which uses Backward Looking and Forward Looking Specification. This research uses quarterly time series data from 1988.IV-1999.IV or consist of 45 observations. The data is taken from several publications. If quarterly data were not available, the interpolation procedure would be used. Methods of analysis used in this study are Error Correction Model for backward approach and Forward Looking Buffers Stock Model for forward approach.

The estimation results of ECM show that in the short run the money supply, government expenditure and policy of oil price increasing have a significant effect on inflation, but real income and exchange rate have not any significant effect on inflation. In the long run, money supply and real income have a significant effect on inflation, but the exchange rate and government expenditure have not any significant effect on inflation.

The t-test of Error Correction Term is significant. This indicates that the Error Correction Model is valid. The specification of Forward Looking Buffers Stock Model informed that the economic agents have fully forward looking expectation behaviour. This is shown by the sign and statistical significance as hypothesized.

The result of t-test for the selection between Error Correction Model and Forward Looking Buffers Stock Model indicates that Forward Looking Buffers Stock Model for inflation is better than the Error Correction Model.

Key words : Inflation - Error Correction Model - Forward Looking Buffers Stock Model

1. STIE Kerja Sama, Yogyakarta
2. Fakultas Ekonomi Universitas Gadjah Mada, Yogyakarta
PENGANTAR
Latar Belakang Masalah

Selain faktor-faktor tersebut di atas, berdasarkan pengalaman selama dua dasawarsa terakhir dapat diamati bahwa dorongan terhadap kenaikan harga-harga barang dan jasa dalam perekonomian Indonesia, secara spesifik disebabkan oleh beberapa faktor utama. Faktor-faktor tersebut adalah: devaluasi, kenaikan gaji pegawai negeri, kenaikan harga BBM dan kenaikan tarif listrik (Prasedianus,1995:114). Khusus mengenai pengaruh kenaikan harga BBM terhadap inflasi, hal ini karena hampir semua sektor perekonomian memerlukan energi bahan bakar minyak (BBM) untuk penggerak mesin-mesin produktif seperti kendaraan bermotor, angkutan umum, traktor, industri pengolahan dan generasi pembangkit tenaga listrik; sehingga adanya kenaikan harga BBM akan menyebabkan peningkatan secara langsung biaya operasional sektor-sektor pengguna BBM. Peningkatan biaya langsung ini berdampak lagi terhadap berbagai aspek perekonomian yang terkait dengan BBM. Dampak tidak langsung tersebut dapat bertujuan kenaikan biaya-biaya faktor produksi non-BBM maupun kenaikan harga-harga output dan sebabnya mengapa dampak pengurangan subsidi BBM terhadap tingkat harga-inflasi di Indonesia selama kurun waktu 1988-1999, IV.

Perumusan Masalah

Bagaimana pengaruh jumlah uang beredar, nilai tukar, penugasan pemerintah riil, pendapatan nasional riil dan kebijakan kenaikan harga BBM/pengurangan subsidi BBM terhadap tingkat harga-inflasi di Indonesia selama kurun waktu 1988-1999, IV.
Tujuan Penelitian
Berkaitan dengan rumusan masalah di atas, tujuan penelitian ini adalah:

Untuk mengetahui pengaruh jumlah uang beredar, pendapatan nasional riil, nilai tukar rupiah terhadap mata uang asing, pengeluaran pemerintah riil dan kebijakan kenaikan harga BBM terhadap tingkat harga umum (tingkat inflasi) di Indonesia selama periode 1988.IV - 1999.IV.

Untuk menentukan model yang cocok dalam menjelaskan perubahan inflasi dengan variabel-variabel penelitinya, model koreksi kesalahan atau model stok penyanga masa depan.

Hipotesis

Diduga model yang cocok adalah model koreksi kesalahan.

METODE PENELITIAN
Metode Pengumpulan Data

Spesifikasi Model
Model dasar yang digunakan dalam penelitian ini mengacu pada model yang digunakan oleh Gary G. Moser (1995) dalam studinya tentang faktor-faktor penting yang mempengaruhi inflasi di Nigeria yaitu:

\[P_t = f(M_t, Y_t, e_t, Z_t) \]

Dalam penelitian ini model tersebut dimodifikasi, yaitu dengan menghingga variabel curah hujan dan menggantinya dengan variabel pengeluaran pemerintah (G) serta memasukkan variabel kebijakan kebijakan kenaikan harga BBM sebagai variabel dummy (b), sehingga modelnya adalah...
menjadi:
\[P_i = f (M_i, Y_i, e_i, G_i, D_i) \]
Dalam bentuk log persamaan ekonometrinya menjadi:
\[\log P_i = a_i + b_i \log M_i + b_j \log Y_i + b_k \log e_i + b_l \log G_i + b_m D_i + \varepsilon_i \]

Alat Analisa

Di samping itu untuk mengetahui spesifikasi model mana yang lebih cocok akan dilakukan seleksi model dengan uji non nested. Dalam penelitian ini juga dilakukan pengujian stabilitas dengan menggunakan uji stabilitas dari Chow (Chow Test).

TINJAUAN TEORI DAN PENELI TIAN SEBELUMNYA

Pengertian Inflasi

Sebab-sebab Inflasi

Secara garis besar, inflasi berdasarkan penyebyabanya dikelompokkan sebagai berikut: (Soedjiono Reksodiyanto, 1992: 188)

Teori Inflasi Tarikan Permutaan

Ada beberapa teori atau analisa ekonomi yang dapat dinasukakan ke dalam kategori inflasi permintaan yaitu: pendekatan teori kuantitas uang, pendekatan 3R - LM, pendekatan permintaan-penawaran agregat.

Pendekatan Teori Kuantitas Uang: Jumlah Uang Beredar

Pandangan ini berbeda dengan pengikut Keynes, yang menganggap mekanisme pengaruh perubahan jumlah uang beredar terhadap tingkat harga-harga umum adalah tidak langsung, melalui mekanisme transmisi tingkat bunga yang akan berpengaruh pada pengeluaran agregat.
Pendekatan analisa IS - LM

Faktor-faktor yang mengakibatkan kurva IS bergesersmenjadi sumber utama merupakan sebab timbulnya inflasi permintaan. Misalnya karena pengeluaran konsumsi pemerintah, kenaikan transfer pemerintah, kenaikan ekspor, kenaikan optimisme susana dunia usaha dan lain sebagainya. Sw-langkan faktor-faktor yang mengakibatkan kurva IS bergeser ke kanan dapat menyebabkan timbulnya inflasi permintaan, seperti kenaikan JUB, surplus neraca pembayaran nasional dan lain sebagainya.

Pendekatan analisa permintaan-penawaran agregatif

Teori Inflasi Penawaran (Inflasi Dorongaa Upah)

Menurut teori ini inflasi terjadi karena berkurangnya penawaran agregat (kurva penawaran agregat bergeser ke kiri). Apabila permintaan agregat tetap, maka harga akan naik. Faktor yang menyebabkan terjadinya perubahan penawaran agregat ini dapat diartikan bermacam-macam, mulai dari tingkat upah, harga barang dalam negeri, harga barang impor, ataupun kekuatan struktural.

Inflasi Campuran (Demand-Supply Theories of Inflation)

Inflasi campuran atau mixed inflation, adalah inflasi yang unsur penyebabnya adalah berupa campuran antara inflasi permintaan (demand-pull inflation) dan inflasi penawaran (cost-push inflation). Biasanya demand pull inflation murni atau cost push inflation murni akan terjadi terlebih dahulu, setelah gejala inflasi mulai terasa dampaknya terhadap perekonomian maka unsur penyebab timbulnya inflasi yang lain mulai muncul dan ikut bergabung mempercepat laju inflasi.
Pandangan-Pendangan Tentang Inflasi
Pandangan Monetarist

Pandangan Keynesian

Analisis Keynesian mengindikasikan bahwa jumlah uang beredar yang meningkat secara terus menerus memiliki efek yang sama pada kurva AD dan AS. Kestabilan kurva dengan yang dicapai Monetarist, yaitu pertumbuhan jumlah uang beredar dengan cepat akan menyebabkan tingkat harga meningkat secara terus menerus pada tingkat yang lebih tinggi, sekaligus menyebabkan inflasi.

Hubungan Nilai Tukar dengan Inflasi

Floating Exchange Rate

tingkat harga yang baru lebih tinggi. Real money balance menyebabkan
tingkat bunga naik. Selama petunjuk penyesuaian terjadi apresiasi nilai
atau sebaliknya nilai tukar yang baru lebih tinggi, terjadi penurunan eksport
neto, balance of payments kembali seimbang, terapi dengan net capital flow
yang lebih besar.

Fixed Exchange Rate

Tambahan asumsi yang digunakan adalah bahwa tingkat inflasi
dunia sama dengan tingkat inflasi domestik pada posisi awal. Tingkat
inflasi dunia dianggap konstan. Adanya kenaikan pengeluaran
pemerintah IS dan AD bergerak ke kanan, Eksport neto turun, pendapatan
naik, dan kenaikan tingkat bunga menarik short-term capital. Hal ini
menyebabkan apresiasi nilai tukar. Bank dalam negeri harus menjual
mata uangnya dan membeli dollar. Penjualan mata uang domestik oleh
lembaga perbankan akan meningkatkan penawaran sang domistik
sehingga akan menggeser LM ke kanan. Terapi pergerakan AD masih
lebih jauh. Akibatnya adalah naiknya tingkat inflasi domestik relatif
terhadap luar negeri. Dua efek dari kenaikan tingkat inflasi domestik:
1. Real money balance turun, sehingga menggeser LM ke kiri.
2. Ada kemunduran dalam posisi persaingan dari dalam negeri,
sehingga menggeser BF ke atas (ke kiri) dan IS juga ke kiri.

Proses ini akan berhenti ketika LM memotong BP pada kurva IS yang
baru, pada tingkat pendapatan semula karena nanya tingkat pendapatan
ini yang konsisten dengan anggapan tingkat inflasi domestik sama
dengan tingkat inflasi dunia. Hasil akhir harus berada pada tingkat bunga
nominal yang lebih tinggi, karena pada keseluruhan periode penyesuaian
posisi eksport neto turun. Apabila keseimbangan neraca pembayaran harus
dipelihara pada nilai tukar tetap, ini hanya akan menghasilkan kenaikan
net capital inflow. Dalam hal ini hanya mungkin terjadi jika tingkat bunga domestik
naik relatif terhadap luar negeri.

Penelitian Sebelumnya

Aghhevi dan Khan (1977) menggambarkan proses terjadinya inflasi
di Indonesia terutama diakibatkan oleh defisit pemerintah yang ditutup
dengan swancetak uang baru.

Modelnya menunjukkan model dynamic inflation yang didasarkan
atas ide bahwa tingkat inflasi cenderung menaikkan pengeluaran lebih
cyat dari pada pendapatan. Sebagai akibatnya akan terjadi kekurangan
defisit yang akan menurunkan money supply (melalui ekspansi moneter
bank sentral) dan selanjutnya mengakibatkan turunnya inflasi (kenaikan
inflasi) berikutnya. Penelitian yang senada pernah dilakukan oleh A.
Hermawan Gunawan.

Penelitian yang berbeda dilakukan oleh Nopirin (1983), yang menemukan jumlah uang beredar dan variabel moneter lain sebagai komponen yang mempengaruhi inflasi secara langsung serta bagaimana peran variabel moneter dalam mempengaruhi harga, apakah pengaruh itu secara langsung (direct influence) atau tidak langsung (indirect influence).

Penelitian-penelitian dan pengalaman model inflasi lain yang pernah dilakukan di Indonesia adalah:

Penelitian lain yang pernah dilakukan di Indonesia dengan menggunakan model Gary C. Moser adalah penelitian yang dilakukan
oleh:

METODOLOGI PENELITIAN

Penurunan Model

Model dasar mengacu pada model yang digunakan oleh Gary G. Moser (1995) dalam studinya tentang faktor-faktor penting yang mempengaruhi inflasi di Nigeria yaitu:

\[P_t = f (M_t, Y_t, ER_t, Z_t) \]

(3.1)

Sesuai dengan tujuan penelitian ini, model tersebut kemudian dimodifikasi yaitu dengan menggantikan variabel curah hujan dan menggantinya dengan variabel pengeluaran pemerintah (G) serta memasukkan variabel kebijakan kenaikan harga BBM sebagai variabel dummy (D), sehingga modelnya menjadi:

\[P_t = f (M_t, Y_t, ER_t, G_t, D_t) \]

(3.2)

Untuk memperkecil variasi data yang nantinya besar variabel-variabel diconversi dalam bentuk log, sehingga model tersebut di atas menjadi model log sebagai berikut:

\[\log P_t = a + b_1 \log M_t + b_2 \log Y_t + b_3 \log ER_t + b_4 \log G_t + b_5 \log D_t + \varepsilon \] ...(3.3)
Diskripsi Variabel

a. Inflasi
 Data inflasi diukur dengan data indeks harga konsumen (IHK) karena
 adalah satu cara untuk mengukur inflasi adalah dengan IHK. Data ini
diperoleh dari laporan Bank Indonesia, baik yang diterbitkan secara
mingguan, bulanan maupun kwartalan. Data-data tersebut
disamaikan tahun dasarnya terlebih dulu.

b. Jumlah Uang Beredar
 Jumlah uang beredar yang digunakan dalam penelitian ini adalah
 M4. Data ini diperoleh dari laporan mingguan, laporan bulanan
maupun laporan triwulanan Bank Indonesia.

c. Pendapatan Nasional Rill (Produk Domestik Bruto Rill)
 Pendapatan nasional rill akan diukur dengan Produk Domestik
Bruto (PDB) rill. Data ini diperoleh dari SEKI terbitan Bank Indonesia
yang datanya diperoleh dari BPS.

d. Nilai Tukar Rupiah
 Nilai tukar adalah harga mata uang asli negara bila dibandingkan
dengan mata uang negara lain. Dalam penelitian ini nilai tukar yang
digunakan adalah nilai tukar antara Rupiah dengan Dollar AS dalam
bentuk nilai tukar rata-rata, yang datanya diambil dari SEKI terbitan
Bank Indonesia.

e. Pengeluaran Pemerintah Rill
 Data pengeluaran pemerintah yang digunakan dalam penelitian ini
mencakup pengeluaran rutin dan pengeluaran pembangunan. Data ini
diperoleh dari BPS dan Departemen Keuangan.

f. Variabel Kebijakan Kenaikan Harga BBM (Variabel Dummy)
 Selama periode penelitian pemerintah telah empat kali mengeluarkan
kebijakan kenaikan harga BBM yaitu pada bulan April 1990, April

Spekifikasi Model Dinamis

Model yang selaras dengan kenyataan adalah model linear dinamis.
Penurunan model dinamis dilakukan dengan dua cara yaitu
Autoregressive Distribusi lag (ADL) dan fungsi biaya quadart
(Quadratic cost function). Pendekatan ADL dilakukan dengan memasukkan variabel
kelambanan dalam model, sedangkan pendekatan fungsi biaya adalah
dengan menghubungkan biaya keindah seimbang dan penyesuaian.

Dalam penelitian ini hanya menfookuskan pada pendekatan fungsi
biaya quadart karena keunggulan yang dimilikinya. Pendekatan ini
dikelompokan menjadi dua, yaitu penurunan fungsi biaya quadart
periode tengah dan penurunan fungsi biaya quadart periode berganda.
Penurunan Model Dinamis: Fungsi Biaya Kuartal Periode Tunggal

Penurunan model dinamis dengan fungsi biaya kuartal periode tunggal yang digunakan adalah Model Koreksi Kesalahan (ECM).

Penurunan Model Koreksi Kesalahan

\[DP_t = \lambda_0 + \lambda_1 D M_t + \lambda_2 D Y_t + \lambda_3 D E_t + \lambda_4 D G_t + \lambda_5 M_{t-1} - \lambda_6 Y_{t-1} - \lambda_7 E_{t-1} - \lambda_8 G_{t-1} + \lambda_9 P_{t-1} - M_{t-1} - Y_{t-1} - E_{t-1} - G_{t-1} + \lambda_{10} D_t \]

\[(3.9) \]

Penurunan Model Dinamis: Fungsi Biaya Kuartal Periode Berganda

Yada dasarnya, model stok penyangga masa depan diturunkan dari persamaan fungsi biaya kuartal periode berganda. Fungsi biaya tersebut mengikuti pola Cuthbertson (1988:114) yaitu:

\[C_t = E \sum D \left[\lambda_1 (X_{a_t} - X_{a_t}^*) + \lambda_2 ((1-B) X_{a_t}) \right] + \lambda_3 \]

\[(3.10) \]

Pembentukan persamaan pendekatan model stok penyangga masa depan dalam penelitian ini adalah sebagai berikut.

\[L P_t = \lambda_1 B L P_t + (1-\alpha) \sum (D)(E L P_t^*) \]

\[(3.15) \]

Asumsi yang perlu diperhatikan adalah bahwa nilai faktor diskonto (D) yang digunakan sama dengan satu. Untuk penelitian ini nilai D yang digunakan adalah 0.90. Pemilihan nilai diskonto sebesar 0.90 dikarenakan dalam studi empiris nilai D berkisar antara 0.90 - 0.99 (Cuthbertson, 1988:12).

Pendekatan Kointegrasi

Pendekatan kointegrasi berkaitan dengan upaya untuk menghindari terjadinya regresi lancung yang akan mengabaikan koefisien regresi
Uji Akar-akar Unit

Uji akar-akar unit yang digunakan dalam penelitian ini adalah uji yang dikembangkan oleh Dickey dan Fuller (1979,1981,1982) yaitu:

\[DX_i = \delta_0 + \delta_1 t + \delta_2 X_{i-1} + \sum_{j=1}^{k} \beta_j B^j DX_j \quad \text{..(3.16)} \]

\[DX_i = \delta_0 + \delta_1 t + \delta_2 X_{i-1} + \sum_{j=1}^{k} \beta_j B^j DX_j \quad \text{..(3.17)} \]

di mana: \(DX_i \) = \(X_i - X_{i-1} \)

\(\beta \) = Variabel yang diamati pada periode \(t \)

\(T \) = Trend waktu

\(\delta \) = Operasi korelasi ke uudik (Backward lag operator)

\(k \) = \(N^{n0} \), dimana \(N \) adalah jumlah observasi

Kriteria pengujianya adalah apabila nilai DF (ADF) hitung lebih kecil daripada nilai DF (ADF) tabel, menandakan bahwa data yang dipakai tidak stasioner. Sebaliknya, apabila nilai DF (ADF) hitung lebih besar daripada nilai DF (ADF) tabel berarti data tersebut stasioner.

Uji Derajat Integrasi

Uji derajat integrasi ini merupakan perluasan dari uji akar-akar unit, sehingga untuk dapat menerapkan uji ini, perlu dilakukan uji model otoregresi berikut (Insukindo,1992h:262, Insukindo,1996a:130):

\[D^2X_i = \epsilon_i + \epsilon_1 BDX_i + \sum \epsilon BDX_i \quad \text{..(3.19)} \]

\[D^2X_i = \epsilon_i + \epsilon_1 BDX_i + \sum \epsilon BDX_i \quad \text{..(3.20)} \]

di mana: \(D^2X_i \) = \(DX_i - DX_{i-1} \)

\(BDX_i \) = \(DX_{i-1} \)

\(T \) = Trend waktu
\[X_t = \text{Variabel yang diamati pada periode } t \]
\[B = \text{Operasi kelambaran ke ndik (Backward lag operator)} \]
\[k = N^{1/2} \text{ dimana } N \text{ adalah jumlah observasi} \]

Nilai statistik DF dan ADF untuk uji ini dapat diketahui dengan melihat nilai statistic pada koefisien regresi BX pada peramaian (3.39) dan (3.30). Jika \(e_t \) dan \(e_t \) jika sama dengan satu, maka variabel \(X \) dikenal stasioner pada differensi pastima atau berintegrasi pada derajat satu. Apabila \(e_t \) dan \(e_t \) tidak berbeda dengan ndl, maka variabel \(X \) belum stationer pada differensi pertama. Dalam kaitan ini uji derajat integrasi perlu dilanjutkan kembali diperoleh satu kondisi stasioner.

Uji Kointegrasi

Uji Kointegrasi ini merupakan kelanjutan dari uji akar-akar unit dan uji derajat integrasi yaitu untuk mengetahui apakah residual regresi yang dihasilkan stasioner atau tidak. Untuk itu uji kointegrasi ini harus diuji terlebih dahulu bahwa variabel yang diamati memiliki derajat integrasi yang sama. Apabila ada dua atau lebih variabel terkait mempunyai derajat integrasi yang berbeda, misalkan \(X = 1 \) (1) dan \(Y = 1(2) \) maka variabel-variabel tersebut tidak dapat berkointegrasi. Pada umumnya sebagian uji kointegrasi berada pada derajat 1(0) atau 1(1).

Untuk menghitung statistik CRDW, DF dan ADF ditaksir regresi kointegrasi berikut ini dengan OLS:

\[Y_t = m_1 + m_2X_{tn} + m_3X_{tn} + e_t \]

Dimana :
\[Y = \text{variabel dependen} \]
\[X = \text{variabel independen} \]
\[e = \text{error term (variabel gangguan)} \]

Setelah residual "\(e \)" diketahui maka dilakukan penaksiran model otoregresif dari residual tersebut dengan persamaan berikut menggunakan OLS:

\[\text{De}_{t-k} \times \text{Be}_{t-k} \]

\[\text{De}_{t-k} \times \text{Be}_{t-k} + \sum w_k \theta_k \text{De}_{t-k} \]

\[\theta_k \]

\[i = 1 \]
Uji Koefisien Regresi Jangka Panjang

Besaran dan simpangan baku koefisien regresi jangka panjang dipertolong melalui penentuan model dinamis, dalam hal ini model koefisien kesalahan. Misalkan bentuk model koefisien kesalahan tersebut adalah (Insukindro, 1990: 2-4):

\[Y_t = a + b_1 X_{1,t} + b_2 X_{2,t} + b_3 (X_{1,t} - Y_{t-1}) \]

Dinamika:

\[Y_t = (1-B) Y_t \]
\[X_{1,t} = (1-B) X_{1,t} \]
\[X_{2,t} = \text{variabel terikat} \]
\[X_{2,t} = \text{variabel penjelas} \]
\[B = \text{backward lag operator} \]

Dari persamaan (3.24a) dapat diperoleh hubungan jangka panjang antara variabel \(Y_t \) dan \(X_{1,t} \) yang dapat ditaliskan sebagai berikut:

\[Y_{t+1} = a + b_1 X_{1,t} + b_2 X_{2,t} + b_3 (X_{1,t} - Y_{t-1}) \]

Besar koefisien regresi jangka panjang untuk intersep (a) dan variabel \(X_1 \) (b) adalah seperti berikut ini:

\[a = a / b_1 \text{ atau } a = a / \text{koefisien ECT} \]
\[b = (b_1 + b_3) / b_3 \]

Koefisien regresi \(B \times \text{Koefisien ECT} \)

selanjutnya dengan cara yang sama seperti terseb ab di atas, simpangan baku koefisien regresi jangka panjang untuk a dan b dapat dihitung dengan persamaan berikut ini.
\[\hat{\mathbf{\omega}}(\alpha) = \alpha \mathbf{Y} (\beta_0, a) \alpha \]
\[\hat{\mathbf{\omega}}(\beta) = \beta \mathbf{Y} (\beta_0, b) \beta \]
\[t_{\text{statistik}} = \frac{\text{Koefisien regresi jangka panjang} - \text{Standar deviasi}}{\sqrt{\text{Koefisien regresi jangka panjang}}} \]

Uji Yang Tidak Disarankan (Non Nested Test)

Untuk melihat perbedaan antara dua model penelitian, akan digunakan uji yang tidak disarankan (non nested test). Uji yang tidak disarankan adalah metode untuk melakukan seleksi model apabila model-model yang akan diselidiki tergolong non nested (Gujarati:1995:489). Dimisalkan terdapat dua model sebagai berikut:

Model C: \(Y_i = \alpha_0 + \alpha_1 X_{ni} + u_t \)

Model D: \(Y_i = \beta_0 + \beta_1 Z_{ni} + v_t \)

dimana: X dan Z adalah variabel yang berbeda

Misalnya C dan D adalah non nested, karena model yang satu tidak dapat menjadi kasus khusus dari model yang lain. Dalam penelitian ini, model yang akan diperbandingkan adalah model koreksi kesalahan dengan model stok penyesuaian masa depan.

Uji J (J Test) / Uji Mac-Kinnon, White and Davidson (MWD Test)

Untuk dapat menerapkan uji MWD ada beberapa tahap yang diperlukan:

1. Pengujian \(H_0 \) terhadap \(H_1 \)
 Terlihat nilai-nilai yang diberi simbol \(Y_i \) selanjutnya estimasi model berikut dengan regresi OLS:
 \[\mathbf{DY}_i = a_1 X_{ni} + a_2 X_{ni} + a_3 \text{ECT}_{ni} + a_4 Y_{ni} + e_i \]
 Dimana X adalah variabel bebas dalam model koreksi kesalahan dan
Y adalah variabel terikat. Relasinya jika \(a \) ternastra berbeda dari nilai secara signifikan, maka dikatakan bahwa model stock penyaangga masa depan adalah model yang paling unggul.

2. Pengujian H, terhadap \(H_1 \), Pengujian \(H_2 \), terhadap \(H_1 \), ini hampir serupa dengan langkah pengujian sebelumnya, hanya dalam hal ini urutan pengujian justru dibalik. Langkah pertama, dari persamaan model koreksi kesalahan, disertai \(\bar{y}_t \) dengan memberi simbol \(\bar{y}_p \). Kemudian melanjutkan penalaran model berikut dengan NLS:
\[
\bar{y}_t = b_1 + b_2 x_{1t} + b_2 x_{2t} + \cdots + b_k x_{kt} + \varepsilon_t
\]
Di mana: \(b_2 = (I-B)(I-B)^{-1} \), \(D = 0.99 \)
\(\bar{y}_p \) = expected value of future long variables yang diperoleh dari estimasi koefisien jangka panjang model koreksi kesalahan. Kriteria pengujian adalah apabila \(b_2 \), tidak sama dengan nilai secara signifikan dengan hipotesis \(b_2 = 0 \), maka model koreksi kesalahan lebih unggul dibandingkan dengan model stok penyengga masa depan.

Uji Stabilitas
Pengujian ini diperlukan karena adanya sumber-sumber ketergantungan sebelum dan setelah penerbitan jurnal, perubahan teknologi, gejolak perekonomian dunia, perubahan sistem politik dan lain-lain. Uji stabilitas ini merupakan uji yang disarankan oleh Chow yang lebih dikenal dengan Chow Forcisi Test. Dalam uji Chow digunakan uji F, disaat dalam hubungan lebih kecil dari F tabel, berarti parameter pada model yang bersangkutan stabil selama periode pengamatan.

HASIL ANALISIS DATA DAN KESIMPULAN

Estimasi OLS Klasik
Hasil estimasi OLS klasik dapat dilihat pada tabel 4.6, berdasarkan uji signifikansiparsial (ei t) pada derajat 5% semua variabel adalah signifikan kecuali variabel pengeluaran pemerintah (G). Di samping itu berdasarkan uji tanda koefisien menunjukkan kesesuaian dengan teori untuk variabel jumlah uang (M), pendapatan riil (Y) dan nilai tukar; (E(R) yaitu mempunyai tanda yang positif untuk nilai tukar dan jumlah uang bersih, dan tanda negatif untuk pendapatan riil. sedangkan variabel kebijakan kenakan harga BBM dan pengeluaran pemerintah ternya mempunyai tanda koefisien yang tidak sesuai dengan teori dan hipotesis yang diajukan.

Berdasarkan uji asumsi klasik terlihat bahwa model ini hanya lolos
ujl normalitas, sehingga estimator yang diperoleh tidak memenuhi kriteria BLUE (Best Linear Unbiased Estimator), sehingga uji t dan uji F kurang layak digunakan.

<table>
<thead>
<tr>
<th>Tabel 1. Hasil Estimasi OLS Klasik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept: 0,256 (0,040)</td>
</tr>
<tr>
<td>X: 0,183 (0,000)</td>
</tr>
<tr>
<td>Y: 0,074 (0,000)</td>
</tr>
<tr>
<td>Z: 0,087 (0,000)</td>
</tr>
<tr>
<td>R²: 0,97</td>
</tr>
<tr>
<td>DW statistic: 1,64</td>
</tr>
<tr>
<td>F statistic: 251,98</td>
</tr>
<tr>
<td>S²: 0,24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uji Diagnosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Korelasi Serial: LM(4) = 0,004</td>
</tr>
<tr>
<td>2. Linieritas: LM(5) = 2,005</td>
</tr>
<tr>
<td>3. Normalitas: LM(l) = 0,088</td>
</tr>
<tr>
<td>4. Heteroskedastisitas: LM(1) = 0,877</td>
</tr>
</tbody>
</table>

Sumber : Lampiran
Catatan: a. Signifikansi pada α = 0,01
b. Signifikansi pada α = 0,05

c. Signifikansi pada α = 0,025

Melihat adanya berbagai kelemahan dalam uji linear klasik tersebut, maka akan digunakan uji model dinamis yang salah satunya adalah bentuk model koreksi kestabilan (ECM). Penggunaan model dinamis juga didasari penurunan bahwa banyak variabel ekonomi yang menyimpang dari poisi equilibrium mereka tidak dapat kembali ke posisi equilibrium baru dengan cepat (Maddala, 1992; Adjih, 1994; Wardhono, 1998:91)

Pendekatan Kointegrasi dan Model Koreksi Kestabilan

Sebelum melakukan estimasi kointegrasi, terlebih dahulu dipastikan datanya sudah stasioner. Untuk itu dilakukan uji akar-akar unit data. Dengan melakukan uji derajat integrasi, apabila uji akar-akar unit data belum stasioner maka dilanjutkan dengan uji derajat integrasi, sehingga diperoleh data variabel yang stasioner.

Uji Akar-Akar Unit

Hasil dari uji akar-akar unit adalah pada tabel 2. berikut.
Tabel 2. Uji Akar-Akar Unit

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Nilai DF</th>
<th>Nilai ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>1,209</td>
<td>-5,945</td>
</tr>
<tr>
<td>LM1</td>
<td>-0,113</td>
<td>-2,167</td>
</tr>
<tr>
<td>L Y1</td>
<td>-1,979</td>
<td>-2,394</td>
</tr>
<tr>
<td>LE2</td>
<td>-0,554</td>
<td>-1,847</td>
</tr>
<tr>
<td>LG</td>
<td>-0,857</td>
<td>-1,990</td>
</tr>
</tbody>
</table>

Sumber : Lampiran

Nilai kritis Mac Kinnon

<table>
<thead>
<tr>
<th>Nilai kritis</th>
<th>DF</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
<td>-3,5856</td>
<td>-4,1781</td>
</tr>
<tr>
<td>5 %</td>
<td>-2,9286</td>
<td>-3,5136</td>
</tr>
<tr>
<td>10 %</td>
<td>-2,6021</td>
<td>-3,1808</td>
</tr>
</tbody>
</table>

Dari tabel di atas menunjukkan bahwa variabel-variabel yang diamati belum stasioner. Oleh kerena itu perlu diikuti dengan uji perbaikan yang selanjutnya uji perbaikan integrasi untuk mengetahui pada derajat berapa data akan stasioner.

Uji Derajat Integrasi

Hasil estimasi derajat integrasi adalah terdapat pada tabel 3.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Nilai DF</th>
<th>Nilai ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>-4,035</td>
<td>-4,152</td>
</tr>
<tr>
<td>LM1</td>
<td>-5,586</td>
<td>-5,520</td>
</tr>
<tr>
<td>L Y1</td>
<td>-7,900</td>
<td>-7,903</td>
</tr>
<tr>
<td>LE2</td>
<td>-5,543</td>
<td>-5,518</td>
</tr>
<tr>
<td>LG</td>
<td>-4,531</td>
<td>-4,476</td>
</tr>
</tbody>
</table>

Sumber : Lampiran

Nilai kritis Mac Kinnon

<table>
<thead>
<tr>
<th>Nilai kritis</th>
<th>DF</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
<td>-3,5889</td>
<td>-4,1837</td>
</tr>
<tr>
<td>5 %</td>
<td>-2,9303</td>
<td>-3,5162</td>
</tr>
<tr>
<td>10 %</td>
<td>-2,6030</td>
<td>-3,1882</td>
</tr>
</tbody>
</table>
Dari tabel 3 di atas diketahui bahwa semua variabel pengamat standing stasioner pada derajat yang sama yaitu derajat pertama (1). Hal ini menunjukkan bahwa data pada pendidikan dapat digunakan untuk analisis jangka pendek dan jangka panjang. Untuk lanjut kepada uji kointegrasi prasaratnya sudah terpenuhi.

Hasil estimasi Model Koreksi Kesalahan

Hasil estimasi model koreksi Kesalahan dapat dilihat dari tabel 4. Hasil estimasi Model Koreksi Kesalahan

| DLP = -0,017 + 0,391 DLM1 + 0,056 BLY + 0,077 DLElt |
\((-1,077)^a \)	\((1,997)^b \)	\((0,402)^a \)	\((1,230)^b \)	
-0,354 DLG + 0,501 BLG1 + 0,467 BLY + 0,071 BLER	\((-1,932)^a \)	\((1,986)^a \)	\((1,894)^b \)	\((0,677)^a \)
-0,035 BLY + 0,114 DL8DMY - 0,395 ZCT	\((-2,133)^a \)	\((-3,250)^a \)	\((-2,129)^a \)	

R = 0,456

\(S^2 = 0,086 \)

F-stat ~ 2,477

Dw ~ 2,345

Uji Diagnostik (Diagnostic Test)

1. Korelasi serial : \(\text{LM}(4) = 11,08^a \) \(X^2_{\text{hit}} = 11,143 \)
2. Limiteas : \(\text{LM}(4) = 2,40^a \) \(F_{\text{hit}} = 3,51 \)
3. Normalitas : \(\text{LM}(2) = 5,185^a \) \(X^2_{\text{hit}} = 5,991 \)
4. Homokedastisitas : \(\text{LM}(1) = 0,736^a \) \(X^2_{\text{hit}} = 3,841 \)

Sumber : lampiran

Catatan : a. Signifikat pada \(a = 0,01 \)
b. Signifikat pada \(a = 0,025 \)
c. Signifikat pada \(a = 0,05 \)
d. Tidak signifikat
Dari tabel di atas diketahui bahwa hasil estimasi model koreksi kesalahan menunjukkan bahwa nilai t statisitik koefisien Error Correction Term (ECT) sangat signifikan yaitu 2,129 dengan derajat kepercayaan 2,5%, dimana besarannya nilai koefisien adalah 0,395. Hal ini mengindikasikan bahwa koefisien model perlihatkan harga di Indonedia dapat dibenarkan atau sudah layak dan model adalah valid serta variabel-variabelnya saling berkenaikan. Dari nilai ECT mengindikasikan adanya keseimbangan jangka panjang, walaupun dalam jangka pendek mungkin terjadi ketidak-seimbangan. Ketidak-seimbangan dalam satu periode akan dikoreksi pada periode berikutnya.

Dilihat dari nilai koefisien determinasi atau R² namun tidak begitu besar (R² = 0,436), namun besarannya R² tersebut diperoleh dari estimasi model ECM yang pada dasarnya menekankan hubungan antara variabel-variabel bebas dalam bentuk persaudaraan atau variabel-variabel, berbeda dengan pembahasan sebelumnya data terhadap data-rata-rataannya.

Pada model koreksi kesalahan, hasil estimasinya menunjukkan bahwa model tersebut lolos dari berbagai uji diagnosis yaitu uji otokorelasi, uji linearitas, uji heterokedastitas dan uji normalitas. Hal ini dapat disimpulkan bahwa dari uji diagnosis ini model koreksi kesalahan yang digunakan telah memenuhi anggaran dari regresi linear klasik yaitu menghasilkan estimator yang BLUES (Best Linear Unbiased Estimator).

Pada tabel 5 di atas juga dapat dianalisis perilaku model dalam jangka pendek. Hasil estimasi menunjukkan bahwa nilai koefisien variabel jumlah uang beredar (LM1) signifikan secara statistik pada derajat kepercayaan 5%. Dengan demikian dalam jangka pendek fluktuasi harga dipengaruhi oleh jumlah uang beredar. Hal ini sesuai dengan teori dan hipotesis yang diuji dalam penelitian ini. Sedangkan dalam jangka panjang (tabel 6) koefisien variabel jumlah uang beredar L1 juga menunjukkan tanda positif atau sesuai dengan teori, dan juga berpengaruh secara signifikan.

Variabel pendapatan riil dalam jangka pendek mempunyai tanda koefisien positif, tidak sesuai dengan teori dan hipotesis yang diuji, yaitu sebesar 0,068 yang artinya kalau variabel-variabel lain tetap nolnya...
pendapatan riil sebesar 1,5% akan berpengaruh pada peningkatan harga sebesar 0,068%. Namun berdasarkan uji statistik pengaruh tersebut tidak signifikan. Sedangkan dalam jangka panjang pengaruh variabel pendapatan riil terhadap perilaku variabel harga sangat signifikan dan mempunyai tanda koefisien positif, sesuai dengan teori dan hipotesis yang diajukan dalam penelitian ini.

Untuk variabel nilai tukar (ER), baik dalam jangka pendek maupun dalam jangka panjang mempunyai tanda koefisien positif yang sesuai dengan teori artinya kalau nilai tukar naik walaupun angka ($ S$) terhadap rupiah naik maka tingkat harga akan naik. Besarnya koefisien adalah 0,077 untuk jangka pendek dan 0,819 untuk jangka panjang, artinya kalau nilai tukar naik 1% akan menyebabkan harga sebesar 0,077% untuk jangka pendek dan 0,819% untuk jangka panjang. Jika dilihat dari tingkat signifikansinya, menunjukkan bahwa baik dalam jangka pendek maupun dalam jangka panjang pengaruhnya tidak signifikan.

Untuk variabel pengeluaran pemerintah dalam jangka pendek mempunyai tanda koefisien negatif, tidak sesuai dengan teori dan hipotesis yang diajukan dalam penelitian ini. Besarnya koefisien adalah 0,355, artinya apabila pengeluaran pemerintah naik 1%, harga akan turun sebesar 0,355%. Sedangkan dalam jangka panjang, variabel pengeluaran pemerintah ini mempunyai tanda koefisien positif, sesuai dengan teori dan hipotesis yang diajukan dalam penelitian ini, namun tidak signifikan secara statistik. Besarnya koefisien jangka panjang pengeluaran pemerintah adalah 2,6104 artinya kalau pengeluaran pemerintah naik 1%, harga akan naik 2,6104%.

Variabel kebijakan kenaikan harga BMI dalam jangka pendek ternyata berpengaruh secara signifikan terhadap perilaku harga. Hal ini dapat dilihat dari nilai t statistik yang cukup besar yaitu 3,25. Namun dengan tanda koefisien negatif yang tidak sesuai dengan teori dan hipotesis yang diajukan. Besarnya koefisien variabel kebijakan/dummy adalah 0,114 artinya kalau ada kebijakan kenaikan harga BMI , tingkat harga justru turun sebesar 0,065%. Apabila dikaikan dengan uji Chow yang berguna untuk melihat stabilitas koefisien hasil estimasi parameter selama pengamatan, dimana hasilnya koefisien hasil estimasi tidak stabil sepanjang periode pengamatan, maka dapat dipahami apabila kebijakan kenaikan harga BMI tidak berpengaruh pada kenaikan harga, melainkan pada penurunan harga (tidak berpengaruh sebagaimana musimnya).

Hasil Estimasi Model Stok Penyanga Masa Depan

Hasil estimasi model stok penyanga masa depan dapat dilihat pada tabel 5 dan 7 berikut ini.
Tabel 6. Hasil Estimasi Model Stok Penyanga Masa Depan

<table>
<thead>
<tr>
<th>Koefisien</th>
<th>Std. Error</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-0,552</td>
<td>4,790</td>
</tr>
<tr>
<td>C(2)</td>
<td>0,206</td>
<td>0,005</td>
</tr>
</tbody>
</table>

\[R^2 = 0,974 \]
\[DW Statistik = 1,118 \]
\[F-statistik = 1571,835 \]

Sumber: Lampiran

Tabel 7. Hasil Estimasi Model Stok Penyanga Masa Depan

<table>
<thead>
<tr>
<th>Koefisien</th>
<th>Std. Error</th>
<th>t-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-0,554</td>
<td>4,790</td>
</tr>
<tr>
<td>C(2)</td>
<td>0,116</td>
<td>0,003</td>
</tr>
</tbody>
</table>

\[R^2 = 0,974 \]
\[DW Statistik = 1,118 \]
\[F-statistik = 1572,209 \]

Sumber: Lampiran

Hasil Estimasi Uji J

Hasil uji J dapat dilihat pada tabel 8, adapun hasil pengujianya menunjukkan bahwa a, berbeda dari nol secara signifikan dan b_j, tetapi berbeda dari nol secara signifikan. Dengan kata lain, berdasarkan uji J, model stok penyanga masa depan memiliki kemampuan yang lebih baik dalam menjelaskan pengaruh jumlah uang beredar, pengeluaran pemerintah, nilai tukar, pendapatan nasional nilai dan kebijakan kenaikan harga BBM terhadap tingkat harga di Indonesia.

Tabel 8. Hasil Estimasi Uji J

<table>
<thead>
<tr>
<th></th>
<th>OLS (ECM)</th>
<th>NLLS (FLM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koefisien</td>
<td>-0.000107</td>
<td>1.0738</td>
</tr>
<tr>
<td>T-statistik</td>
<td>-1.596</td>
<td>35.6192</td>
</tr>
</tbody>
</table>

Sumber: Lampiran

Uji Stabilitas

Tabel 9. Hasil Uji Stabilitas

<table>
<thead>
<tr>
<th>Dummy</th>
<th>F-hitung (Chart Test)</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990.2</td>
<td>640,808</td>
<td>Tidak Stabil</td>
</tr>
<tr>
<td>1991.2</td>
<td>245,4691</td>
<td>Tidak Stabil</td>
</tr>
<tr>
<td>1993.2</td>
<td>155,0142</td>
<td>Tidak Stabil</td>
</tr>
<tr>
<td>1998.2</td>
<td>5,564189</td>
<td>Tidak Stabil</td>
</tr>
</tbody>
</table>

Sumber: Lapisan

KESIMPULAN

Penelitian ini bertujuan untuk mengamati secara empiris pengaruh jumlah uang beredar, pendapatan nasional riil, nilai tukar, pengeluaran pemerintah riil dan kebijakan kenaikan harga BBM terhadap tingkat harga/inflasi di Indonesia.

Pendekatan yang digunakan dalam penelitian ini adalah pendekatan koreksi kesalahan yang diestimasi dengan OLS dan pendekatan stok penyegara masa depan yang diestimasi dengan NLS. Dari kedua pendekatan tersebut, entuk mengetahui model mana yang lebih unggul digunakan uji non nested atau uji yang tidak disempurna.

Hasil estimasi OLS dengan pendekatan model koreksi kesalahan menunjukkan bahwa berdasarkan uji tanda koefisien regresi jangka pendek maupun jangka panjang, variabel jumlah uang beredar dan nilai tukar dalam mempengaruhi tingkat harga mempunyai tanda positif yang sesuai dengan teori dan hipotesis yang diajukan dalam penelitian ini. Variabel pendapatan riil dalam mempengaruhi harga mempunyai tanda koefisien positif untuk jangka pendek (tidak sesuai dengan teori dan...
hipotesis), sedangkan untuk jangka panjang bertanda negatif (sesuai dengan teori dan hipotesis). Kebijakan kenaikan harga BBM ternyata
mempunyai pengaruh negatif terhadap tingkat harga, berkebalikan
dengan teori dan hipotesisnya. Apatila dilihat dari tingkat signifikansi
nya, ternyata dalam jangka pendek variabel pendapatan nasional riil,
nilai tukar dan pengeluaran pemerintah tidak signifikan dalam mem-
pengaruhi tingkat harga. Sedang variabel jumlah uang beredar dan
kebijakan kenaikan harga BBM mempunyai pengaruh yang signifikan
terhadap tingkat harga. Dalam jangka panjang pengaruh variabel jumlah
uang beredar dan pendapatan nasional riil terhadap tingkat harga sangat
signifikan, sedangkan pengaruh variabel nilai tukar dan pengeluaran
pemerintah terhadap harga tetap tidak signifikan. Nilai t statistik dari
Loefisien Error Correction Term (ECT) sebesar 2,129 adalah sangat
signifikan, yang mengindikasikan bahwa spesifikasi model koreksi
kesalahan yang digunakan sudah benar (sahih/valid) dan dapat
dipergunakan sebagai analisis.

Hasil estimasi model stok penyangga masa depan dengan
menggunakan metode estimasi NILS menunjukkan bahwa ekspetasi
masa depan dari pelaku ekonomi akan mempengaruhi perilaku tingkat
harga di Indonesia. Hal ini dapat dilihat dari nilai t statistik koefisien
masa depan yang signifikan pada derajat kepercayaan 1 %. Dengan
kata lain, pelaku ekonomi tidak hanya menggunakan informasi masa
lalu, tetapi juga memperhitungkan informasi saat ini dan masa depan
sebagai dasar pengambilan keputusan. Model stok penyangga juga
menunjukkan bahwa pelaku ekonomi bertindak rasional dalam
melakukan ekspetasi harga, artinya pelaku ekonomi menggunakan
semua informasi yang tersedia dan relevan sebagai dasar dalam
pengambilan keputusannya.

Hasil uji non nested dengan menggunakan uji "J" untuk menyelidiki
model antara model koreksi kesalahan dan model stok penyangga masa
depan menunjukkan bahwa model stok penyangga masa depan memiliki
kemampuan yang lebih baik dalam menjelaskan pengaruh variabel
jumlah uang beredar, pendapatan nasional riil, nilai tukar, pengeluaran
pemerintah dan kebijakan kenaikan harga BBM terhadap tingkat harga
di Indonesia.

Saran-Saran Dan Implikasi Kebijakan
Saran-saran dan implikasi kebijakan yang bisa dikemukakan
berdasarkan kesimpulan hasil kajian empiris adalah sebagai berikut.
1. Hendaknya penerapan model stok penyangga masa depan lebih
diperhitungkan dalam kajian emperis di Indonesia karena
SUMATRAN, et al., *Estimasi Beberapa Faktor yang Berpengaruh....* 663

kemampuan model stok penyangga masa depan dalam memberikan informasi yang sangat berguna bagi pengambilan keputusan.

2. Apabila pemerintah akan mengadakan/melaksanakan suatu kebijakan yang akan berpengaruh pada harga, hendaknya mempertimbangkan perilaku pelaku ekonomi yang rasional karena pelaku ekonomi yang rasional akan bereaksi lebih cepat, tidak menunggu-munggu terjadi gejolak di pasar kemudian mengambil keputusan tersebut. Maka peluang menggunakan semua informasi yang tersedia dan relevan untuk mengambil keputusan. Oleh karena itu setiap akan melaksanakan suatu kebijakan, pemerintah hendaknya memperhitungkan secara matang mungkin efek dari setiap kebijakan sehingga target yang diharapkan dari kebijakan itu dapat tercapai.

DAFTAR PUSTAKA

Engle, Robert F. dan Granger, C.W.J., 1987, "Cointegration and Error Correction:
