KERAGAAN JAGUNG (ZEA MAYS L.) BERTONGKOL GANDA YANG DITANAM SECARA TUMPANG SARI

(PERFORMANCE OF PROLIFIC TYPE OF CORN, ZEA MAYS L. IN INTERCROPPING)

Woerjono Mangoendjiojo

Abstract

Prolificity in the maize entries growing in intercropping systems might contribute to both a yield advantage and the maximizing of productive land usage.

A field experiment was conducted to compare the performance of prolific and non-prolific types of maize growing in association with dry beans and in association with spring wheat. Crises of non-prolific x non-prolific, non-prolific x prolific, and prolific x prolific types were evaluated at four plant population levels.

The results indicated that the prolific type was capable of producing higher yields than the non-prolific type at any given plant population and cropping system. The maize-bean intercropping produced higher yield in terms of total yields in combination, total food energy, and protein production.

Selection for prolificity combined with other desired traits in maize grown under the monocultural condition seems to be a promising and effective approach for favorable performance in intercropping systems.

Ringkasan

Jagung bertongkol ganda yang ditanam secara tumpang sari memberikan kemungkinan meningkatkan produksi jagungnya sendiri sehingga dapat diharapkan meningkatkan produksi total per kebun luasnya.

Suatu penelitian lapang untuk menambahkan kemampuan jagung bertongkol ganda dan bertongkol tunggal dilakukan dengan menggunakan 3 (tiga) macam kombinasi persilangan dari jagung tersebut. Jagung ditanam secara tumpang sari dengan gandum dan kacang merah dengan menggantung 4 (empat) aras populasi.

Hasil penelitian menunjukkan bahwa jagung bertongkol ganda mampu berproduksi lebih tinggi dibanding dengan yang bertongkol tunggal pada kondisi tumpang sari dan pada setiap aras populasi, namun jagung yang digunakan. Tumpang sari dengan kacang merah memberikan produksi lebih tinggi baik produkis total, produksi dalam bentuk kalori, maupun dalam bentuk protein.

Seleksi jagung bertongkol ganda dengan disertai sifat-difat lain yang diinginkan pada komisi pertanian tunggal ("monocropping") akan menguntungkan pada bila jagung hasil seleksi tersebut ditanam secara tumpang sari.

*Jurusan Biodiversi Pertanian, Fakultas Pertanian UGM
Latar Belakang

Dalam banyak penelitian khususnya penelitian aspek agronominya, varietas-varietas tanaman yang digunakan adalah merupakan varietas-varietas hasil seleksi (permulaan) pada kondisi pola tanam tunggal (Hamibis et al., 1976). Varietas yang menunjukkan kereakan baik pada kondisi pola tanam tunggal belum tentu akan menunjukkan kereakan yang sama pada kondisi pola tanam tumpang sari.

Jagung yang bertongkol ganda banyak dilaporkan mempunyai kemampuan berproduksi secara konsisten dan pula mempunyai daya adaptasi lebih baik terhadap keadaan lingkungan yang berbeda-beda bila dibandingkan dengan jagung yang hanya bertongkol satu (Josephson, 1961; Ellisworth dan Peloquin, 1972).

Selubungan dengan hal tersebut di atas, jagung yang bertongkol ganda yang mempunyai daya adaptasi lebih baik, kemungkinan akan memberikan produksi yang lebih baik pula bila ditanam dengan pola tanam tumpang sari. Penelitian ini bertujuan untuk mengetahui potensinya bila ditampung saran dengan kaclang merah (Phaseolus vulgaris) dan dengan gandum (Triticum aestivum).

Bahan dan Metode

Data yang digunakan adalah dari sebagian hasil penelitian untuk tesis Ph.D. penulis yang bahan dan metodanya adalah sebagai berikut:

Tiga macam persilangan tunggal (single crosses) dari lima kedua (inbred lines) jagung yang diperoleh dari perakawinan antara A634'H'I × W644'I yang merupakan persilangan antara jagung bertongkol satu x jagung bertongkol satu (HI), W6464'I × A632HI yang merupakan persilangan antara jagung bertongkol satu x jagung bertongkol ganda HI), dan A632'H'I × MS13 yang merupakan persilangan antara jagung bertongkol ganda x jagung bertongkol ganda HI), digunakan untuk penelitian ini.

Pada tahun 1982 semua hasil perilangan tersebut dianalisis dalam lapangan dengan diaman secara pola tanam tunggal, secara tumpang sari dengan kaclang merah, dan dengan gandum. Evaluasi menggunakan rancangan faktorial 4 × 3 × 3 (4 macam tingkat populasi jagung — 15.000, 30.000, 45.000, dan 60.000 tanaman per hektar, 3 macan pola tanam, dan 3 macan tipe persilangan tunggal) dalam rancangan acak kelompok lengkap yang disusun dalam "strip-split-plot".

Satu baris tanaman kaclang merah (dengan populasi kira-kira 120.000 tanaman per hektar) dan dua baris tanaman gandum (dengan kira-kira menggunakan bawah 85 Kg per hektar) ditanam di antara baris-baris tanaman jagungnya. Jagung, kaclang
merah, dan gandum ditanam bersama pada hari yang sama. 34 Kg/Ha N, 67 Kg/Ha P₂O₅, dan 67 Kg/Ha K₂O diberikan sebagai pupuk dasar. Pada waktu tanam jagung berumur 45 hari semua plot dipupuk dengan 114 Kg/Ha N. Penyapanan kepada tanaman kacang merah dan gandum tidak diberikan secara khusus.

Data produksi untuk jagung, kacang merah, dan gandum diperhitungkan dalam kwintal per hektar pada keadaan 15,5 persen kandungan air. Data produksi ini juga diperhitungkan dalam bentuk elivale energi dan protein yang diberikan.

Hasil dan Diskusi

Gambar 1a dan 1b, menunjukkan grafik produksi yang diberikan oleh ketiga hibrida jagung dan produksi totalnya (produksi jagung + produksi kacang merah atau produksi gandum). Dari gambar tersebut terlihat bahwa sampai tingkat populasi 60.000 tanaman per hektar, hibrida H3 (tongkol ganda × tongkol ganda) masih menunjukkan keunggulannya dibanding kedua hibrida yang lain.

![Gambar 1a dan 1b](image)

Gambar 1. Hubungan antara kerapatan populasi jagung dan produksi yang diberikan.

(Figure 1. Relationship between maize population density and its grain yield)

Pola yang sama juga ditemukan oleh produksi totalnya (Gambar 1b). Hal ini berdasarkan karena hasil analisis secara terpisah untuk kacang merah dan gandum yang ditanam di antara ketiga hibrida jagung tersebut tidak menunjukkan perbedaan yang nyata (Mangonendidjoyo, 1983).

Pada penelitian ini, hibrida H2 (tongkol ganda × tongkol satu) sampai dengan tingkat populasi 60.000 tanaman per hektar masih menunjukkan kenaikan produksi. Sedangkan untuk hibrida H3 (tongkol ganda × tongkol ganda) kenaikannya sedikit dan
untuk hibrida H_1 (tongkol satu \times tongkol satu) produksi tertinggi dicapai pada tingkat populasi 45.000 tanaman per hektar. Ini sesuai dengan hasil uji F seperti tercantum pada Daftar 1.

Daftar 1. Uji F untuk data produksi.

(Table 1. F-test for several kinds of yield)

<table>
<thead>
<tr>
<th>Variabel (SV)</th>
<th>Db</th>
<th>Kwadrat Rata-rata (MS)</th>
<th>YC</th>
<th>YT</th>
<th>Kcal</th>
<th>Prot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep. (R)</td>
<td>2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Prop. (P)</td>
<td>3</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>RpP</td>
<td>6</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Crop. Syn. (C)</td>
<td>2</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>RmC</td>
<td>4</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PmC</td>
<td>6</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>RpPaC</td>
<td>12</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Hybrid (H)</td>
<td>2</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PdH</td>
<td>6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>ns</td>
</tr>
<tr>
<td>CcH</td>
<td>4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>PnPcH</td>
<td>12</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Error</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean 37.29 42.87 14860.48 424.62

Keterangan:
- **YC** — produksi hibrida jagung (Kw/Ha)
- **YT** — produksi total (jagung + kacang merah atau gandum) (Kw/Ha)
- **Kcal** — ekivalen produksi energi (Kcal/Ha)
- **Prot** — ekivalen protein (Kg/Ha)

Dari Daftar 1 ini juga terlihat bahwa hasil analisis varian untuk YC, YT, dan Kcal menunjukkan hasil yang bersamaan. Untuk protein, uji F untuk pola tanam (C) menunjukkan nyata sekali. Ini mungkin sekali disebabkan karena kacang merah mempunyai kandungan protein yang lebih tinggi dibanding jagung dan gandum. Ini juga memberikan pengaruh nyata terhadap interaksi dengan populasi.

Untuk melihat potensi produksi ketiga macam hibrida pada pola tanam yang digunakan, Gambar 2, 3, dan 4 menyajikan masing-masing untuk produksi total (Kw/HA), ekivalen energi (Kcal/HA), dan ekivalen protein (Kg/HA).
Gambar 2. Produksi jagung pada pola tanam yang berbeda dan produksi totalnya.
(Figure 2. Grain yield of maize under different cropping systems and yields in combination).

Jika dirangkaskan potensi rata-rata produksi untuk kentang hibrida jagung tersebut seperti terlihat pada Daftar 2.
Prodeksi rata-rata ketiga macam hibrida dan produksi (tahapnya). (Table 2. Mean yields of different hybrids and their yields in combination).

<table>
<thead>
<tr>
<th>Produksi</th>
<th>Macam Hibrida</th>
<th>LSD 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1</td>
<td>H2</td>
</tr>
<tr>
<td>Jagung</td>
<td>32,31</td>
<td>36,76</td>
</tr>
<tr>
<td>Total</td>
<td>37,90</td>
<td>32,40</td>
</tr>
<tr>
<td>Energi</td>
<td>13,196,08</td>
<td>14,700,13</td>
</tr>
<tr>
<td>Protein</td>
<td>382,37</td>
<td>421,14</td>
</tr>
</tbody>
</table>

(\times 1000 kcal)

Gambar 3. Total kalori yang diterima pada pola tanam yang berbeda. (Figure 3. Total calorie production under different cropping systems)
Gambar 4. Total protein yang dihasilkan pada pola tanam yang berbeda. (Figure 4. Total protein production under different cropping systems).

Kesimpulan

Dari hasil penelitian ini bisa disimpulkan bahwa jagung bertongkol ganda meng-panyai kemampuan betroproduksi lebih tinggi dibandingkan dengan jagung yang cuma bertongkol satu, pada setiap tingkat populasi yang diberikan maupun pada macam pola tanam yang berlainan. Hal ini menguatkan hasil-hasil penelitian sebelumnya yang menentukan kemampuan jagung tersebut pada tingkat populasi tanaman yang berbeda-beda (Mangoendjidejo, 1983). Berdasarkan hasil-hasil tersebut, untuk kepentingan pemulianan tanaman, mencari varietas jagung yang bertongkol ganda perlu mendapatkan perhatian khususnya bila dilihat manfaatnya bagi petani yang lahannya terbatas dan oala tanamnya tidak tunggal. Seleksi jagung bertongkol ganda yang diperlukan sifat-sifat lain yang diinginkan pada kondisi pola tanam tunggal memberikan manfaat pula untuk ditinam secara tunggang sari.

Bila nutrisi yang digunakan sebagai parameter untuk menilai berhasilnya satu pola tanam, tumpang sari jagung dengan kacang merah memberikan ekivalen produksi energi dan protein yang lebih menguntungkan.
Daftar Pustaka

