RAPID CONFIRMATION OF RABIES ANTIGEN IN FORMALIN-FIXED PARAFIN-EMBDEDDED TISSUE BY IMMUNOPATHOLOGIC DIAGNOSIS

R. Wasito* and Hastari Wuriyantuni**

ABSTRACT

Shanks experimentally infected with street virus rabies intramuscularly were used to demonstrate rabies viral antigen in parafin-embedded tissue by immunopathology diagnosis approach, the avidin biotin complex (ABC) method. The use of ABC method provides a simple and sensitive method to localize rabies virus antigen in formalin-fixed tissues. The results of the present study also demonstrated that a procedure: using formalin-fixed parafin-embedded fixing and stained immunopathologically by the ABC method was an excellent method for both preservation of morphological details of cells/tissues and demonstration of rabies virus antigens.

* Department of Pathology
** Veterinary Internal Medicine
Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta
ABSTRACT

Skunk yang diinfeksi dengan street rabies virus intramuskuler digunakan untuk mengidentifikasi antigen virus rabies pada spesimen jaringan yang dicetak parafin melalui pendekatan diagnosis immunopatologi, metode avidin biotin complex. Aplikasi metode ABC yang digunakan untuk menentukan/melokasi adanya antigen virus rabies pada sedimen jaringan cetak parafin merupakan metode yang sederhana dan sensitif. Hasil penelitian ini juga menunjukkan bahwa prosedur fisik jaringan dengan formalin dan kemudian dicetak parafin, yang selanjutnya diwarnai secara immunopatologi dengan metode ABC merupakan metode yang baik dan tepat untuk preservasi riasan morfologi sel/jaringan dan identifikasi antigen virus rabies.

INTRODUCTION

Rabies virus causes lethal infection in humans and animals with the occurrence of acute encephalitis in most cases and paralysis in some cases. Until recently, the postmortem diagnosis of rabies has been based mainly on conventional histopathologic examination to demonstrate intracytoplasmic inclusions, Negri bodies (Negri, 1903). If fully developed Negri bodies were not observed, the diagnosis of rabies by this method was difficult or inconsistent. Negri bodies, however, were not detected in any tissues which were found to be positive by virus isolation in mice or in cell culture (Koprowski, 1973; Teklu and Smith, 1946). The development of Negri bodies is related to the length of time a rabies victim lives after signs and symptoms of the disease appear. It is also extremely difficult to detect rabies antigens in tissues that may no longer contain infectious viral particles because of postmortem autolysis. The fluorescent antibody (FA) technique is widely accepted as the best method to visualize fine particles of rabies virus antigen in rabies-infected tissues. In FA technique, however, it is difficult to identify surrounding tissue structures and cellular morphological details. The FA technique of rabies antigen could be accomplished only by examining fresh-frozen or glycerin-preserved tissues.

Consequently, immunopathologic diagnosis has been developed that used monospecific antiserum to rabies virus antigen in formalin-fixed embedded tissue sections with enzyme immunocytochemical approaches. In the present study, avidin biotin complex (ABC) technique was developed to examine the distribution of street rabies virus antigen in the brain of skunk after inoculation by intramuscular route.

MATERIALS AND METHODS

Tissue preparation

Tissue from skunk experimentally infected with street virus rabies were used in trial of a formalin fixative and a processing method for the ABC technique. The glass slides of formalin-fixed, paraffin-embedded brain tissues of the skunks and polyclonal antibody: rabbit hyperimmune serum to rabies virus was kindly provide by Prof. Dr. Roger K. Maes, Department of Microbiology and Public Health, and Animal Health Diagnostic Laboratory, Michigan State University, E. Lansing, MI, USA.

Skunk were inoculated intramuscularly with street rabies virus by methods previously described (Black and Lawson, 1970; Charlton and Case, 1979). They were killed in terminal stages of the diseases, or when moribund. The brain were removed and pieces of brain were placed in 10% buffered formalin pH 7.0.

Brain tissues were dehydrated in ethanol, cleared in xylene and embedded in low-melting point paraffin (52-54°C). Section were cut at 6 μm, floated on gelatin-coated slides, deparaffinized in 3 x 2 minutes changes of xylene, followed by 3 x 15 seconds changes of 95%, 70%, and 50% ethanol, respectively, and rehydrated in distilled water.

Immunopathologic diagnosis assay procedure

The avidin biotin complex (ABC) technique was used. After deparaffinization and rehydration, brain tissue section were rinsed with 0.05 M phosphate buffered (PBS) saline pH 7.5, following which they were blocked for endogenous enzyme activity by incubation in 0.3% hydrogen peroxide in absolute methanol for 30 minutes. They were then treated with normal goat serum for 30 minutes to reduce non-specific binding. After the slides were washed with PBS, the primary antibody was applied and the slides were incubated in a moist chamber for 2 hours at 37°C. Control slides were treated with normal rabbit sera instead of the primary antibody. After incubation, the slides were washed and then treated with biotinylated goat anti-rabbit IgG diluted 1:200 for 30 minutes at room
RESULTS

Fresh-formalin-fixed tissues were very well stained by the avidin biotin complex (ABC). In sections inoculated with street rabies virus, large Negri bodies were mainly in the perikarya of neurons while neuronal processes contained viral antigens in the form of very fine particles of filaments. Avidin biotin complex staining was very intense and extensive with formalin-fixed tissues. Antigens occurred as large and small bodies, granules, and filaments. Large clumps or aggregate viral antigen stained dark brown. Some bodies were brownish-yellow at the centre with a dark brown ring at the periphery. Small bodies or granules were present in most of neurons of the challenge virus standard infected brain (Fig. 1). Also, morphological details of the brain tissue were well preserved, being similar to that of routine histopathological sections. In the cerebellum, the dendrites of Purkinje cells were well outlined by their content of rabies antigen. The controls were negative and free of endogenous peroxidase (Fig. 2).

![Figure 1](image1.png)

Fig. 1. Avidin biotin complex staining of rabies viral antigen in large and small inclusion bodies in the cytoplasm of a neuron (ABC, 500×).

![Figure 2](image2.png)

Fig. 2. Avidin biotin complex staining of non-challenge street rabies virus antigen standard. The control was negative and no rabies antigen in neuronal processes (ABC, 500×).

DISCUSSION

Immunocyto(histo)chemical methods are valuable tools for both routine histopathology and research. Permanence of the reaction product and usefulness in fixed tissue sections together with the facility for simultaneous pathological diagnosis, make the immunoperoxidase methods the technique of choice in histopathology at the present time (Batachandran and Charlton, 1994).

In this trial, the avidin biotin complex (ABC) technique is a good method for rabies diagnosis in sections of 10% neutral buffered formalin. The both morphological features and details of the tissue and demonstration of fine as well as large particles of antigen were well preserved. Based on our observation, fine particles of rabies viral antigen in formalin-fixed, paraffin-embedded tissues, similar to immunofluorescence (Johnson et al., 1988; Barnad and Voges, 1982). However, the sensitivity of viral antigen detection by immunofluorescence method tends to decrease after long preservation (Palmer et al., 1985), so that its sensitivity in such samples is not as high as that in ABC method.
Besides the ABC method, peroxidase-antiperoxidase (PAP) immunohistochemical staining technique has also been developed that use specific antisera to rabies virus (Tseng, 1982; Tavros-Angel et al., 1984; Palmer et al., 1985; Bourgeois and Charlton, 1987). Using these ABC and PAP methods, rabies viral distribution has been examined in natural cases of rabies in humans and animals after death (Feiden et al., 1985; Feiden et al., 1988).

Negri bodies which consist of viral nucleocapsides accumulated in the cytoplasm, were found in this study, especially in skunks at the moribund stage. The mechanism by which rabies virus disseminates within the CNS are poorly understood, even though rabies virus replication is known to be strictly neurotropic (Rostrup and Dietzschold, 1987). In the experimental infection of rats, it has been demonstrated that rabies virus entered from the peripheral nerves and spread through axonal transport and the cerebrospinal fluid (CSF) pathway (Tsang, 1982; Gillet et al., 1986). In mice inoculated intracerebrally with a high dose of rabies virus, viral antigens were found in the ependymal cells and in neurons adjacent to the central canal of the spinal cord (Jackson and Reimer, 1989).

CONCLUSION

In conclusion, the ABC methods in formalin-fixed paraffin-embedded tissues was a good method for both demonstration of antigen and preservation of tissue structure. Our method is well suited for research on rabies. Since this method is simple (not time consuming) and sensitive, it is considered a desirable approach for routine rabies diagnosis on fixed tissue. It is therefore useful in cases where the only tissue available was fixed in formalin.

ACKNOWLEDGMENTS

We thank Prof. Dr. Roger K. Maes, Department of Microbiology and Public Health, and Animal Health Diagnostic Laboratory, the glass slides of formalin-fixed paraffin-embedded brain tissues of the skunks and polyvalent antibody; rabbit hyperimmune serum to rabies virus.

REFERENCES

RADIO RECEPTOR ASSAY FOR DIAGNOSTIC SERUM AND MILK 1,25-DIHYDROXYCHOLECALCIFEROL

Hastari Wuryantari

ABSTRACT

The objectives of this study were to modify and develop technique for determination of 1,25-(OH)2D3 concentrations in sera and milk samples. The developed technique, used non-HPLC for extraction and purification of the samples and involved radio receptor assay which used calf thymus as 1,25-(OH)2D3 receptor for quantitation of 1,25-(OH)2D3. Results of this study were compared to that of the technique developed by Horst et al. (1981) which used HPLC for samples extraction and purification. The correlation between the two techniques was r=0.85. Using the modified technique the 1,25-(OH)2D3 concentrations in cow and sow sera were 57.42±5.3 pg/ml (n=20) and 75.22±6.05 pg/ml (n=20) respectively, whereas the 1,25-(OH)2D3 concentrations in cow and sow milk were 16.62±2.2 pg/ml (n=20) and 21.92±3.125 pg/ml (n=20). Based on the results could be concluded that the technique that had been developed in this study was found satisfactory for determination the 1,25-(OH)2D3 concentration either in serum or milk samples.

*Veterinary Clinic Department, Faculty of Veterinary Medicine, GMU.