ABSTRACT

The study on crisan's bud through tissue culture was aimed to study the effect of combination between BAP and IAA plant growth regulator substance and determine the appropriate concentration of BAP and IAA for multiplication of crisan's bud through tissue culture. This study was carried out in the tissue culture laboratory, Balai Benih Induk (BBI), Salaman, Magelang Regency, in Central Java Province. This study used factorial experiment arranged in Completely Randomized Design (CRD). The treatment consisted of 2 factors. The first factor was the BAP concentration, consisted of four levels i.e. 0 ppm (B1); 0.5 ppm; 1 ppm, and 1.5 ppm. The second factor was IAA concentration, consisted of four level, IAA i.e. 0 ppm; 0.5 ppm; 1 ppm, and 1.5 ppm.

Based on the result of analysis, it showed that the combination of BAP 1 ppm and IAA 1 ppm gave the biggest amount of bud multiplication. The treatment of BAP concentration did not affect the bud length. Similarly, to the IAA concentration did not affect the bud length as well.

Key words: Crisan, bud, BAP and IAA.

INTISARI

Penelitian tentang penggandaan tunas krisan melalui kultur jaringan bertujuan untuk mempelajari pengaruh kombinasi zat pengatur tumbuh BAP dan IAA serta menentukan konsentrasi BAP dan IAA yang tepat untuk penggandaan tunas krisan melalui kultur jaringan. Penelitian ini dilaksanakan di laboratorium kultur jaringan, Balai Benih Induk (BBI), Salaman, kabupaten Magelang, Propinsi Jawa Tengah.

Penelitian ini menggunakan percobaan factorial yang disusun dalam Rancangan Acak Lengkap (RAL). Perlakuan terdiri dari 2 faktor. Faktor Pertama adalah konsentrasi BAP yang terdiri dari empat level meliputi konsentrasi 0 ppm (B1); 0.5 ppm (B2); 1 ppm (B3) dan 1.5 ppm (B4). Faktor kedua adalah konsentrasi IAA yang terdiri dari empat level meliputi konsentrasi 0 ppm (I1); 0.5 ppm (I2); 1 ppm (I3) dan 1.5 ppm (I4).

Berdasarkan hasil analisis menunjukkan bahwa kombinasi BAP 1 ppm dan IAA 1 ppm memberikan penggandaan tunas terbanyak. Perlakuan konsentrasi BAP tidak berpengaruh terhadap panjang tunas, demikian juga konsentrasi IAA tidak berpengaruh terhadap panjang tunas.

Kata kunci: Krisan, tunas, BAP dan IAA.

1 Fakultas Pertanian Universitas Sejuangwiyata Tamansiswa Yogyakarta
PENDAHULUAN

Krisan merupakan bunga potong yang mempunyai nilai ekonomi tinggi sehingga prospeknya sangat baik. Pasar potensial bunga krisan antara lain Jerman, Inggris, Italia, Swiss, Australia, Amerik Selatan, Swedia, Denmark, lapan dan lainnya. Dalam rangka memenuhi kebutuhan bunga krisan dalam negeri dan luar negeri (eksport), Indonesia berpeluang untuk mengembangkan usaha bunga krisan.

Krisan dapat diperbanyak secara generatif dan vegetatif. Perbanyakan bunga krisan secara generatif untuk menanam di lahan luas dan penanaman khusus.


Dalam kultur jaringan sangat diperlukan zat pengatur tumbuh untuk mengurangi pertumbuhan dan morfogenesisa dalam kultur sel, jaringan dan organ (Gunawan, 1987). Zat pengatur tumbuh yang digunakan adalah sitokinin dan aksin. Sitokinin yang biasa digunakan 6-Bezul Amino Purin (BAP) dan kinetin, sedang aksin yang digunakan adalah IAA, NAA dan IBA. Zat pengatur tumbuh ini diperlukan untuk pertumbuhan ekspalan. Menurut Hendaryono dan Widayanti (1994) pembentukan kakis, jaringan kuncup dan jaringan akar ditentukan oleh penggunaan zat pengatur tumbuh yang tepat baik maupun konsentrasi.

BAHAN DAN METODE

Bahan ekspalan yang digunakan adalah meristem pucuk dengan panjang 5 cm. Bahan ekspalan dimasukkan dalam botol steril dan ditambahkan kedalamnya larutan batokin 20 % sampai bahan ekspalan terendam, kemudian dibiarkan 7 menit. Bahan ekspalan dibias dalam air steril selama 5 menit. Bahan ekspalan dimasukkan ke dalam Baydlin 10 % selama 10 menit, kemudian dibias dalam air steril selama 5 menit. Selanjutnya bahan ekspalan direndam dalam larutan betadine 0,25 % selama 5 menit. Bahan ekspalan dibias dalam air steril, masing-masing selama 5 menit. Bahan ekspalan meristem dicas pada botol dengan media inisiasi (MS) dan botol ditutup aluminium foil.

Penggandaan tunas diawali dengan induksi tunas yang dilakukan dengan cara menanam ekspalan yang sudah dicas pada media induksi tunas sesuai perlakuan. Perlakuan penggandaan tunas terdiri dari dua faktor: Faktor pertama perlakuan BAP dengan 4 level konsekutif yaitu 0 ppm (B1); 0,5 ppm (B2); 1 ppm (B3) dan 1,5 ppm (B4). Faktor kedua perlakuan IAA dengan 4 level yaitu 0 ppm (I1); 0,5 ppm (I2); 1 ppm (I3) dan 1,5 ppm (I4). Percobaan diasarkan dalam Rancangan Acak Lengkap (RAL) dengan 3 ulangan, yaitu unit perlakuan menggunakan 5 botol kultur yang dilainnya 1 tunas untuk setiap
HASIL DAN PEMBAHASAN

Kombinasi konsestrasii BAP dan IAA berpengaruh berpengaruh nyata terhadap penggandaan tunas melalui kultur jaringan yang tercipta pada parameter jumlah tunas, jumlah dan berat kering tanaman mikro. Rerata jumlah tunas, jumlah akar dan berat kering tanaman mikro pada berbagai BAP dan IAA melalui kultur jaringan disajikan pada tabel 1.

Tabel 1. Rerata jumlah tunas, jumlah akar dan berat kering tanaman mikro krisan melalui kultur jaringan umur 8 minggu.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Jumlah tunas</th>
<th>Jumlah akar</th>
<th>Berat kering tan. Mikro (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP 0 ppm + IAA 0 ppm</td>
<td>1,0 b</td>
<td>15,1 b</td>
<td>0,028 c</td>
</tr>
<tr>
<td>BAP 0 ppm + IAA 0,5 ppm</td>
<td>1,0 b</td>
<td>15,0 b</td>
<td>0,130 bc</td>
</tr>
<tr>
<td>BAP 0 ppm + IAA 1,0 ppm</td>
<td>1,0 b</td>
<td>16,3 b</td>
<td>0,055 c</td>
</tr>
<tr>
<td>BAP 0 ppm + IAA 1,5 ppm</td>
<td>1,0 b</td>
<td>20,9 a</td>
<td>0,066 c</td>
</tr>
<tr>
<td>BAP 0,5 ppm + IAA 0 ppm</td>
<td>1,3 b</td>
<td>6,2 c</td>
<td>0,087 c</td>
</tr>
<tr>
<td>BAP 0,5 ppm + IAA 0,5 ppm</td>
<td>1,8 b</td>
<td>2,0 d</td>
<td>0,040 c</td>
</tr>
<tr>
<td>BAP 0,5 ppm + IAA 1,0 ppm</td>
<td>1,7 b</td>
<td>3,9 ed</td>
<td>0,032 c</td>
</tr>
<tr>
<td>BAP 1,0 ppm + IAA 0 ppm</td>
<td>1,2 b</td>
<td>0,9 d</td>
<td>0,201 ab</td>
</tr>
<tr>
<td>BAP 1,0 ppm + IAA 0,5 ppm</td>
<td>1,6 b</td>
<td>1,1 d</td>
<td>0,065 c</td>
</tr>
<tr>
<td>BAP 1,0 ppm + IAA 1,0 ppm</td>
<td>1,1 b</td>
<td>0,1 d</td>
<td>0,046 c</td>
</tr>
<tr>
<td>BAP 1,0 ppm + IAA 1,5 ppm</td>
<td>3,5 a</td>
<td>0,7 d</td>
<td>0,414 a</td>
</tr>
<tr>
<td>BAP 1,5 ppm + IAA 0 ppm</td>
<td>1,2 b</td>
<td>0,7 d</td>
<td>0,037 c</td>
</tr>
<tr>
<td>BAP 1,5 ppm + IAA 0,5 ppm</td>
<td>1,0 b</td>
<td>0,7 d</td>
<td>0,051 c</td>
</tr>
<tr>
<td>BAP 1,5 ppm + IAA 1,0 ppm</td>
<td>1,0 b</td>
<td>0,7 d</td>
<td>0,070 c</td>
</tr>
<tr>
<td>BAP 1,5 ppm + IAA 1,5 ppm</td>
<td>1,8 b</td>
<td>0,7 d</td>
<td>0,026 c</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf sama pada kolom sama menunjukkan tidak beda nyata dengan uji jawak berganda Duncan pada Jenjang 5 %.

Berdasarkan analisis sidik ragam konsestrasii BAP dan IAA menunjukkan tidak ada interaksi terhadap panjang tunas. Rerata panjang tunas krisan disajikan pada tabel 2.
<table>
<thead>
<tr>
<th>Perilaku</th>
<th>Panjang tuna (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAP 0 ppm</td>
<td>10,28 a</td>
</tr>
<tr>
<td>BAP 0,5 ppm</td>
<td>10,50 a</td>
</tr>
<tr>
<td>BAP 1 ppm</td>
<td>10,68 a</td>
</tr>
<tr>
<td>BAP 1,5 ppm</td>
<td>6,28 a</td>
</tr>
<tr>
<td>IAA 0 ppm</td>
<td>9,48 p</td>
</tr>
<tr>
<td>IAA 0,5 ppm</td>
<td>5,46 p</td>
</tr>
<tr>
<td>IAA 1 ppm</td>
<td>10,39 p</td>
</tr>
<tr>
<td>IAA 1,5 ppm</td>
<td>6,21 p</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf sama pada kolom sama menunjukkan tidak beda nyata dengan uji jarak berganda Duncan pada jenis 5 %.


Kesimpulan antara BAP dan IAA ini dapat dilihat tabel 2, subhala perilaku tanpa BAP (0 ppm) ternyata memperlihatkan jumlah akar bawyak dan kececerangan jumlah akar menurun dengan meningkatnya konsentrasi BAP. Keadaan ini membuktikan bahwa BAP manfa memelihara pertumbuhan akar. Kemampuan mengembal pertumbuhan akar ini sangat penting dalam penggandaan tuna (multiplication).


KESIMPULAN

Berdasar hasil penelitian dapat disimpulkan:

1. Kombinasi BAP 1 ppm dan IAA 1 ppm memberikan penggandaan tunas krisan terbanyak.
2. Perlakuan konsentrasi BAP tidak berpengaruh terhadap panjang tunas.
3. Perlakuan konsentrasi IAA tidak berpengaruh terhadap panjang tunas.

UCAPAN TERIMA KASIH

Disampaikan kepada Purwindarti Oktavita atas kerjasaannya dalam penelitian ini.

DAFTAR PUSTAKA


