Efektivitas Agronomis Nibbi Pupuk SP-36 untuk Tanaman Sorgum pada Tanah Andosol

SURYANTO BANDJANG "FASSHIMHO"
Jurusan Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Sekip UOM I, Yogyakarta 55271, Indonesia
Diterima 25 Agustus 1997; Disetujui 13 September 1997

Peralihan pasiir di rumah kaca dilakukan setiap menengah hasil Efektivitas Agronomis Nibbi (CAN) pupuk SP-36 untuk tanaman sorgum pada tanah andosol luas. Peralihan dilakukan dengan TSP sebagai pupuk acuan (reference) karena biasa digunakan petani. Perilaku dilakukan pada tiga tahap pupuk, yaitu 100, 200 dan 300 kg/ha yang setara dengan 1:1, 2,22, dan 3,33 g pupuk P poli, pada tanah 60 g/pot dengan umur pupuk 30 (daya rumput). Tanaman sorgum ditumbuhkan dengan 2 gram per pot diusahakan tingkat umur 6 minggu, hematis tanaman dipasukan sehari setelah pertama berat kecil biasa dibuat tekanan dan umur, pertambahan luas dan tanaman antara pe gardah pupuk SP-36 dengan TSP sebagai acuan, diuji pada 6 bulan percobaan. (5%). Penatalaksanaan ulasan pada pupuk SP-36 sebagai pupuk berat kecil total tanaman sorgum dengan ZA sebagai sumber nitrogen, nilain EAN pupuk SP-36 adalah 120:6:89 dan 133,7% masing-masing untuk taksiran pupuk 100, 200 dan 300 kg/pupuk. P/1:5:1, sedangkan untuk taksiran nitrogen, nilai LTPN pupuk SP-36 dengan taksiran terbesar di atas adalah 124:36:110,8 dan 100,7%. Berdasarkan taksiran, untuk yang menggunakan ZA, sebagai sumber nitrogen, nilain EAN pupuk SP-36 dengan taksiran 100, 200 dan 300 kg/ha adalah 122,42; 163,59 dan 195,47% sedangkan yang menggunakan ZA sebagai sumber nitrogen nilain EAN pupuk SP-36 adalah 85,83 dan 100,77%. Ekses penyerapan P dari pupuk TSP dengan ZA adalah 5,9 dan 5,8 dari unsur atur adalah 8,2 dan 8,3% untuk taksiran 100, 200 dan 300 kg/ha. P serendah dengan ZA efisien penyerapan adalah 12:6:1:1 dan 5,1:1 dan dengan unsur diperhut 14:7:8 dan 8,4%. Dari hasil tersebut dapat disimpulkan bahwa pada tanah andosol untuk tanaman sorgum pupuk SP-36 memberikan pengaruh sama atau lebih baik yang sebagian sedikit lebih besar dari pupuk TSP yang biasa digunakan. Dengan densitas tanaman SP-36 atau 30% dengan penumbuhan pupuk TSP. Berdasarkan analisis P terbesar BRLAY 2 dan Assum Ciri Ciri 2 mengukur bahwa P mampu memberi pengaruh sisa lebih besar dari pada pupuk SP-36.

Kata kunci: efektivitas agronomis, pupuk SP-36, tanaman sorgum, tanah andosol

*) A imminent soil/soil properties

Sebelum halan tersebut digelaskan(released) maka pengujian pupuk tersebut diperlukan, tujuannya untuk melihat apakah pupuk pupuk baru terhadap pertumbuhan tanaman dan produktivitas sama atau bahkan lebih tinggi daripada pada pupuk yang lama, yang biasa digunakan oleh petani. Penelitian yang dimaksud seting diperlukan dengan menyiapkan Efektif Agronomis Nisbi (Relative Agronomic Effec-

Bahan dan METODE

Penelitian dilakukan pada tanaman yang mempunyai arti penting dalam pemerintah khususnya dalam pertanian, seperti beras, jagung, dan tembakau. Peta tanaman dilakukan dengan menggunakan metode penelitian yang memerlukan metode uji kualitas bahan pupuk pupuk baru yang akan digunakan untuk mengganti pupuk yang lama (Todak, et al.1,1985; Suryanto, 1994).

Tahap awalnya merupakan tahap yang mempunyai waktu yang perlu untuk unggah P. dan unsur P merupakan unsur unggah penting baik bagi tumbuhan, bahan dan manusia (Darrawidjaja, 1999; Miller and Dunbar, 1990; Minuse, 1978; Wallfolding, 1977). T. a n a b Antukbbo berbagai indik dari bahan abu volkano yang tidak padu, bekerbenan di berbagai bentuk bahan buatan, dengan lebih berat 2.500-5000 pp per liter, dengan sisu adalah= tepung, pupuk dan basah. tanah tanah ini ditentukan dengan digunakan dari permukaan laut yang tinggi setinggi 1000 m. Jenis tanah ini menyiapkan air (air yang baik), seperti 1) daya pengikatan air yang sangat tinggi, 2) Angsana konsistensi angka storer sangat tinggi, 3) daya mengimpan air tinggi tinggi sehingga waktunya mendekati, jenis air jelas tertumpuh vegetasi, 4) sangat gembur terapi mempunyai derajat ketahanan struktur yang tinggi sehingga murah diolah. 5) Jumlah makro dan banyak menyebabkan permeabilitas tinggi (Darrawidjaja, 1990). Antukbbo dengan kandungan mineral alofa yang tinggi mempunyai kemampuan memasuki fosfat yang besar. Makanan positif dari organa alat membuat dapat mengikatkan negatif fosfat, membentuk lebih dari dua ikatan yang menyebabkan fosfat semakin akbar digerak oleh aliran tanaman.
pertumbuhan tanaman sorgum pada tanah andosol. Bentuk perlakuan dapat dilihat sebagai Tabel 1.

<table>
<thead>
<tr>
<th>Tabel 1. Perlakuan kombinasi pupuk nitrogen dan fosfor pada tanah andosol untuk tanaman sorgum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

Keterangan: Perlakuan diambil 3 kali.

penyerapan hara pada sampai dengan efisiensi (umur 6 minggu) ditentukan dengan rumus berikut:

\[
\text{EAN} = \frac{Pp - Pk}{Pa - Pk} \times 100 \%
\]

EAN = Efektivitas Agromonis Nisbi (%), Pp = Produksi akibat pupuk yang diteliti (SP-36), Pk = Produksi tanaman tanpa pupuk, Pa = Produksi akibat pupuk acuan (TSP).

Untuk menentai efisien penyerapan P dilakukan analisis jaringan tanaman untuk mengetahui kadar P dalam jaringan, kemudian scapan P dihitung dengan mengalikan kadar P dengan biomassa tanaman kering. Efisien penyerapan hara pada sampai dengan efisiensi (umur 6 minggu) ditentukan dengan rumus berikut:

\[
\text{EP} = \frac{(\text{Bp} \times \text{Kp}) - (\text{Bo} \times \text{Ko})}{\text{Kp}} \times 100 \%
\]

EP = Persentase hara ditirik dari pupuk (Efisien pemupukan, %), Bk = Berat kering biomasa tanaman dipupuk (g/pot), Bko = Berat kering biomasa tanaman tanpa pupuk (g/pot), Kp = Kadar hara (P) pada jaringan tanaman yang dipupuk (ug/g), Kdo = Kadar hara (P) pada jaringan tanaman yang tidak dipupuk (ug/g). P_o = Hara (P) dari pupuk yang diteliti (g/pot).

Penilaian efik sisa dilakukan analisis kimia kandungan P (P tersedia Bray 2, dan P totalitas asam cairat 2%).

HASIL DAN PEMBAHASAN

Hasil penelitian terhadap pertumbuhan tanaman sorgum menunjukkan bahwa tanaman sorgum sangat tahan terhadap perlakuan P. Pengaruh pupuk P terhadap pertumbuhan tanaman sorgum disajikan dalam bentuk tabel dari berbagai parameter seperti tinggi tanaman, berat segar tubuh dan akar, berat kering tubuh dan akar, kadar P dalam jaringan.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.5</td>
<td>ppm</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>8.5</td>
<td>ppm</td>
</tr>
<tr>
<td>Potassium</td>
<td>10.5</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Tabel 2. Perkiraan kombinasi pupuk nitrogen dan fosfor terhadap tinggi tanaman sorgum hingga umur 6 minggu (cm)

<table>
<thead>
<tr>
<th>Pupuk N</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Tinggi tanaman (cm) pada tingkat ke 6 minggu (cm)

<table>
<thead>
<tr>
<th>Pupuk F</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Berdasarkan kinerja tanaman sorgum

1. Sorgum umur 6 minggu disajikan dalam tabel 3.

Berhati-hatilah dan kering tanaman sorgum

1. Berhati-hatilah pada pengaruh kering tanaman sorgum.
mengendap, mengikat bisa penurunan Ca tersedia bagi tanaman.

Berat segar dan kering akar tanaman sorgum
Berat segar dan berat kering akar tanaman sorgum disajikan dalam Tabel 4. Tabel tersebut menunjukkan bahwa akar tanaman sorgum juga tanggap terhadap pemberian fosfor. Perbedaan nyata antara tanpa pupuk dengan yang diberi pupuk dengan takaran 100 kg pupuk P ha. Peningkatan takaran pupuk selanjutnya menghasilkan peningkatan hasil yang semakin kecil. Pengaruh sumber nitrogen tanpa nyata, urea memberikan pertumuman akar lebih baik daripada pengaruh pupuk ZA. Sedangkan perlakuan jenis pupuk P tidak begitu nyata, namun pengaruh P36 tidak lebih rendah daripada pengaruh TSP.

Nilai Effektivitas agronomis niti (EAN)
Nilai Effektivitas Agronomis Niti berdasar tinggi tanaman dan berat buah akar dan berat kering total biomas tanaman sorgum (trubs dan akar) penggunaan pupuk SP-36 terhadap pupuk TSP sebagai pupuk acuan dengan sumber nitrogen berbeda disajikan dalam Tabel 5.

Tabel 3. Pengaruh kombinasi pupuk nitrogen dan fosfor terhadap berat segar dan kering tubuh tanaman sorgum pada umur 6 minggu (p/pot)

<table>
<thead>
<tr>
<th>Takaran pupuk P</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber N utama</th>
<th>CAF</th>
<th>CAF 10</th>
<th>CAF 20</th>
<th>CAF 30</th>
<th>CAF 40</th>
<th>CAF 50</th>
<th>CAF 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber N Za</th>
<th>CAF</th>
<th>CAF 10</th>
<th>CAF 20</th>
<th>CAF 30</th>
<th>CAF 40</th>
<th>CAF 50</th>
<th>CAF 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berat segar akar tanaman sorgum</th>
<th>1</th>
<th>0.00</th>
<th>0.06</th>
<th>0.12</th>
<th>0.18</th>
<th>0.24</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berat kering akar tanaman sorgum</th>
<th>2</th>
<th>0.00</th>
<th>0.06</th>
<th>0.12</th>
<th>0.18</th>
<th>0.24</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Tabel 4. Pengaruh kombinasi pupuk nitrogen dan fosfor terhadap berat segar dan kering akar tanaman sorgum pada umur 6 minggu (p/pot)

<table>
<thead>
<tr>
<th>Takaran pupuk P</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber N utama</th>
<th>CAF</th>
<th>CAF 10</th>
<th>CAF 20</th>
<th>CAF 30</th>
<th>CAF 40</th>
<th>CAF 50</th>
<th>CAF 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber N Za</th>
<th>CAF</th>
<th>CAF 10</th>
<th>CAF 20</th>
<th>CAF 30</th>
<th>CAF 40</th>
<th>CAF 50</th>
<th>CAF 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berat segar akar tanaman sorgum</th>
<th>1</th>
<th>0.00</th>
<th>0.06</th>
<th>0.12</th>
<th>0.18</th>
<th>0.24</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berat kering akar tanaman sorgum</th>
<th>2</th>
<th>0.00</th>
<th>0.06</th>
<th>0.12</th>
<th>0.18</th>
<th>0.24</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td></td>
<td>0.00</td>
<td>0.06</td>
<td>0.12</td>
<td>0.18</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Kadar P dalam trubus tanaman sorgum
Kadar P dalam jaringan tanaman sorgum disajikan dalam Tabel 6 dan total sepanjang P yang terakumulasi dalam trubus tanaman disajikan dalam Tabel 7.

Oleh Tabel tersebut dapat terlihat bahwa pengaruh pemberian pupuk P menunjukkan kemunduran pada P dari jaringan trubus tanaman sorgum. Penurunan pada mutu bermanfaat pupuk P menunjukkan adanya pengaruh peningkatan sekaligus yang
Tabel 5. Nilai EAN pada SP-36 terhadap popuk, TSP cairan tanaman serpent pada tujuh andal lahan tinggi

<table>
<thead>
<tr>
<th>Tekanan popuk P (kg/ha)</th>
<th>Tinggi tanaman (cm)</th>
<th>Buah, Tumbuh</th>
<th>Buah, total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>ZA</td>
<td>Urea</td>
</tr>
<tr>
<td>100</td>
<td>85.6</td>
<td>112.4</td>
<td>124.4</td>
</tr>
<tr>
<td>200</td>
<td>105.3</td>
<td>100.5</td>
<td>149.9</td>
</tr>
<tr>
<td>300</td>
<td>98.6</td>
<td>109.8</td>
<td>130.2</td>
</tr>
</tbody>
</table>

Tabel 6. Pengaruh kombinasi popuk nitrogen dan fosfat terhadap kadar P dalam varietas tanaman serpent pada umur 6 minggu (x g/pal)

<table>
<thead>
<tr>
<th>Tekanan popuk P (kg/ha)</th>
<th>Urea</th>
<th>ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSP</td>
<td>SP36</td>
</tr>
<tr>
<td>0</td>
<td>5269.8</td>
<td>5369.5</td>
</tr>
<tr>
<td>100</td>
<td>5343.1</td>
<td>5682.4</td>
</tr>
<tr>
<td>200</td>
<td>5364.3</td>
<td>5788.1</td>
</tr>
<tr>
<td>300</td>
<td>5484.4</td>
<td>5400.3</td>
</tr>
</tbody>
</table>

Tabel 7. Pengaruh kombinasi popuk nitrogen dan fosfat terhadap P yang terkonsentrasi dalam buah tanaman serpent pada umur 6 minggu (x g/pal)

<table>
<thead>
<tr>
<th>Tekanan popuk P (kg/ha)</th>
<th>Sumber N urea</th>
<th>Sumber N ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSP</td>
<td>SP36</td>
</tr>
<tr>
<td>0</td>
<td>683.04</td>
<td>665.64</td>
</tr>
<tr>
<td>100</td>
<td>19890.51</td>
<td>25224.44</td>
</tr>
<tr>
<td>200</td>
<td>33297.87</td>
<td>31245.60</td>
</tr>
<tr>
<td>300</td>
<td>56609.12</td>
<td>41052.78</td>
</tr>
</tbody>
</table>

Tabel 8. Pengaruh kombinasi popuk nitrogen dan fosfat terhadap P dari popuk yang terkonsentrasi dalam buah tanaman serpent pada umur 6 minggu (x g/pal)

<table>
<thead>
<tr>
<th>Tekanan popuk P (kg/ha)</th>
<th>Sumber N urea</th>
<th>Sumber N ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSP</td>
<td>SP36</td>
</tr>
<tr>
<td>0</td>
<td>18259.47</td>
<td>24519.40</td>
</tr>
<tr>
<td>100</td>
<td>32561.82</td>
<td>30569.56</td>
</tr>
<tr>
<td>200</td>
<td>53924.08</td>
<td>42167.74</td>
</tr>
</tbody>
</table>

Tabel 9. Patokan P tercapai dalam teks tanaman serpent berdasarkan pemupukan TSP dan SP-36 (%)

<table>
<thead>
<tr>
<th>Tekanan popuk P (kg/ha)</th>
<th>Hasil P tambahan (g/Pal)</th>
<th>ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSP</td>
<td>SP36</td>
</tr>
<tr>
<td>100</td>
<td>222476.9</td>
<td>174524.4</td>
</tr>
<tr>
<td>200</td>
<td>440371.3</td>
<td>348510.8</td>
</tr>
<tr>
<td>300</td>
<td>660610.7</td>
<td>527112.7</td>
</tr>
</tbody>
</table>

J. RUMI TANAH LINGK.
Vol 1, 1997

gemtehankan taraman. Dengan pembiruan P
maka tanaman menjadi tahun buluh dengan baik
(mengentak) sehingga biomassa mengentak
sedangkan berbagai P dari tanah tidak, akibat
kadar unsur P dalam jaringan menurun.
Pembiruan pupuk P mempengaruhi P yang diserap
tanaman, peningkatan takaran pupuk P
mempengaruhi kadar P dalam jaringan
dan kemudian serapan P mengentak dengan
peningkatan takaran pupuk P yang diikombinasikan.

Serapan hara P masih dari pupuk
Serapan hara P dari pupuk oleh tanaman
garam dijelaskan dalam Tabel 1 berikut. Data
tersebut menunjukkan bahwa perbedaan yang
nyata pengaruh pembiruan berikut yang telah
serapan P dari pupuk oleh tanaman.
Takaran pupuk menunjukkan bahwa pembibunan akar dan tumbuh menunjukkan
akibatnya, terjadi peningkatan penyerapan P
oleh tanaman sumber

Persamaan penyerapan lain P relatif dari
pupuk
Hasil pengobatan penyerapan hama (P)
dari tanaman garam hingga umur 6 minggu
disajikan dalam Tabel 9. Tabel tersebut
menunjukkan bahwa P relatif yang terbaik
dari pupuk dengan P dari tanah tidak, akibatnya
disebabkan kumpulan fiksaan tanah andisol
terhadap P cukup tinggi seterusnya mem-
pengaruhi penyerapan P oleh tanaman.
Pentas P yang terbaik dan erakualmurna pada
trubus tanaman garam yang dipupuk SP
lebih tinggi dari pada yang dipupuk dengan
TSP pada perlakuan nitrogen dengan urea,
sedangkan dengan ZA pada takaran pupuk 7
100 kg/ha SP 36 lebih efisien, kemudian
efektivitas menurut peningkatan takaran tanaman
tanaman P. Pada takaran pupuk yang sama
pemberian P04. dan pupuk SP 36 akan 1% lebih
kecil dari pada P dari pupuk TSP, karena
penurunan kadar dari 46% menjadi 36%.
Dengan penyerapan P oleh tanaman yang
hampir sama maka kadar P04. 10% lebih
rendah akan menyebabkan efisiensi jatru

EFEKTIVITAS AGROKASIH SUSI PUPUK SP-36 53

Menurut...

Fosfor dari TSP dan dari SP 36 sama
sama cepat larut dari media tanah berlangsung
efisien, tetapi waktu yang cukup terjadi
yang didapat dari data ini juga terjadi
jala dan Fe silika organik yang aktif pada pada
tanah andisol menyebabkan peningkatan P dalam tanah
tersebut akibatnya tidak dapat diserap oleh
Dalam kondisi baru, bersikap masih
dapat umur P elektrik dengan lanjutan asam
lebih, tanaman ini P terjadinya dalam tanah.

KESIMPULAN

Data penelitian penelitian EAN pupuk
SP-36 untuk tanaman garam pada tanah
andisol seperti tersebut di atas dapat
diuji dengan berikut berarti:
Tanaman garam pada tanah andisol sangat tegang (tespos)
terhadap pemberian pupuk, fosfor, baik dalam bentuk TSP maupun bentuk SP-36 dengan
sumber N dari urea dari ZA. Penggunaan ZA
pada tanah andisol tersebut untuk tanaman
garam dapat memacu keaktifan Ca,
sedangkan untuk tanaman jagung (sisir)
keaktifan Ca tidak terpapak.

Pupuk SP-36 mempunyai nilai EAN untuk
tanaman garam yang tinggi, bahwa sebagian
besar lebih dari 100 %, berdasarkan baku kering
total sumber umur 6 minggu, perluahkan dengan
ZA memberikan nilai EAN pupuk SP-36 adalah
120.6, 86.9 dan 135.7 % masinis-nasi untuk takaran
pupuk 100, 200 dan 300 kg pupuk/ha.

Dengan cara sebagai sumber nitrogen,
nilat EAN pupuk SP-36 untuk tanaman garam
dengan cara tersebut di atas adalah (124,6;
110,8 dan 100,2%). Kenehstian ini berarti bahwa
pupuk SP-36 mempunyai pengaruh sama atau
lebih tinggi daripada pengaruh TSP dengan
dilisakan pupuk SP-36 umum tanaman garam
dapat digunakan sebagai pengganti pupuk TSP.

Penggunaan SP-36 untuk tanaman garam
dapat memberikan pengaruh berat persentase
serapan P oleh tanaman garam umur 6
minggu lebih tinggi daripada pada pupuk TSP,
meskipun secara umum persentase serat pP dari pupuk masih sangat rendah.

Penggunaan urea sebagai sumber nitrogen lebih baik dari pada ZA. Pupuk ZA menyebabkan penurunan pH tanah, begitu juga TSP, sedangkan SP-76 berpengaruh sedikit meningkatkan pH tanah.

Analisis P dalam tanah untaian tanaman sorgum usia 6 minggu perluakan pupuk P dan SP76 masih menunjukkan adanya pengaruh dari pupuk ini dapat meningkatkan natrium P dalam tanah. Sisa P dalam tanah atas penerapan TSP lebih tinggi dari pada perlakuan dengan SP76.

PENGAJARAN

Penuisas mengucapkan terima kasih kepada Dr. Rachman Sunanata atas telah terlibatnya pada usulan ini.

DAFTAR PUSTAKA

