ANALISIS POLIMORFISME GENETIK Anopheles Aconitus Dönitz (DIPTERA: CULICIDAE) DARI DAERAH ISTIMEWA YOGYAKARTA DAN JAWA TENGAH DENGAN RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) - PCR

GENETIC POLYMORPHISM ANALYSIS OF ANOPHELES ACONITUS DONITZ (DIPTERA: CULICIDAE) FROM DAERAH ISTIMEWA YOGYAKARTA AND JAVA TENGAH BY USING RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD) - PCR

Novia Gerasiantuti*, Jestrandi Situmorang† dan F.A. Sudjadi*†

*Program Studi Biologi
Program Pascasarjana Universitas Gadjah Mada

ABSTRACT

The objective of this research was to investigate genetic polymorphism of mosquito population species Aconitus Dönitz from coastal area (Paseban & Tanjung) and upland (Sepangan & Pakeren) using Random Amplified Polymorphic DNA - Polymerase Chain Reaction (RAPD-PCR). The research was conducted at the Biotechnology Laboratory, Inter-University Center, Gadjah Mada University, Yogyakarta on February - July 2000.

The research was conducted in two steps: i.e. field collection of mosquitoes and DNA isolation based on the procedure given by Hooydonk (1998), DNA amplification and electrophoresis in the laboratory. The research used three primers, i.e. E-16, E-17 and E-04.

The results of this research indicated that the specific DNA bands of the whole research locations were 227 bp (foot pair), 393 bp and 436 bp (E-16), 364 bp, 1005 bp, and 2983 bp (E-17). Thus, these primers were potentially to be used for identification (taxonomic keys) of the A. aconitus. The specific bands for mosquitos samples from each research location were not found. Genetic variability of A. aconitus from coastal area, lowland and upland was genotype polymorphism (intrapopulation). Quantitative DNA bands analysis indicated that the sample of mosquito from coastal area had the highest level, i.e. 80%, then consecutively followed by samples of mosquito from upland and lowland being 79,13% and 72,96% respectively.

Keywords: An. aconitus, genetic polymorphism, different habitat, RAPD-PCR

1 Ibn. Agusana Purwaijung No.2, Kec. Pampuk, Tabing - Padang
2 Fakultas Biologi Universitas Gadjah Mada
3 Fakultas Fakultas Ilmu Biologi Universitas Gadjah Mada

139
PENGANTAR

Penelitian ini bertujuan untuk mengetahui sejauh mana terdapat perbedaan genetik atau variasi genetik (polimorfisme) nyamuk *An. aconitus* dari pantai, dataran rendah, dan dataran tinggi.

CARA PENELITIAN

Bahan penelitian yang digunakan adalah nyamuk *An. aconitus* dari pantai (Patehan, Panjatan), dataran rendah (Salaman, Minggir), dan dataran tinggi (Pakem, Sawangan). Bahan kisi yang digunakan untuk isolasi dan amplifikasi DNA adalah HCl, NaOH, EDTA, NaCl, Tris, Proteinase K (Promega), CTAB (Cationic cexxa decetyl Trimedia), Ammonium Bromide, Ammonium acetat, Etanol absolut, Etanol 70%, Mercapto etanol, Penol, Kloroform, Isosamal alcohol, KCI, Triton X-100 (Sigma), MgCl2, dNTP (Promega), Taq DNA Polimerase (Hasil isolasi Sukart M.), Primer Kit E, F (Operon), Mineral Oil, dH6, Agarose, Ethidium bromide, TAE 1x, dan Loading buffer.

Alat-alat yang dipakai adalah waterbath, pellet pastel, vortex, almari asam, sendritus, almari pendingin, tabung eppendorf, mikro pipet, bermacam-macam skawan beserta nipnya untuk isolasi DNA, spektrofotometer elektrofenis, meleksi agarose gel digunakan untuk melihat hasil isolasi dan hasil amplifikasi DNA. Mesin PCR Thermocycler (COY), UV dan alat foto Polaroid serta alat-alat tulis digunakan untuk mengamplifikasi DNA. Aspirator dan Paper cup digunakan untuk menangkap dan menyimpan nyamuk.

1. **Pengadaan Nyamuk *An. aconitus***

2. Isolasi DNA

Konsentrasian DNA diukur dengan cara melihat elektroforesis gel 1% pada larutan buffer TAE 1 x selama 1 jam dengan voltage 100 volt. Jika memberikan pita DNA yang masih apusan (smear), ditambah 1 µL RNAase untuk masing-masing sampel dan diinkubasi pada suhu 37°C dalam waterbath selama satu jam. Setelah itu, sampel disimpan pada suhu -20°C, dan dapat digunakan untuk Polymerase Chain Reaction (PCR).

3. Polymerase Chain Reaction (PCR).

DNA genom yang diperoleh dari hasil isolasi, selanjutnya diamplifikasi dengan PCR. Konsentrasian dan komposisi zat-zat yang dipakai merujukakan hasil optimasi yaitu: buffer PCR 10 x sebanyak 2,5 µL; MgCl₂ 25 mM 2,5 µL, dNTP 0,2 µL, (100 mM dari masing-masing dATP, dCTP, dGTP dan dTTP serta dITP), Taq Polymerase 0,2 µL (10 U/µL), DNA 3-5 µL (sesuai dengan konsentrasian) serta ditambahkan primer 2,0 µL (12 ng/µL). Untuk total volume 50 µL ditambah H₂O steril, sebelum dimasukkan ke mesin PCR diinkubasi dengan 25 µL mineral oil. Setiap kali PCR digunakan kontrol negatif, yaitu semus campuran zat-zat PCR kecuali DNA, berguna untuk mendeteksi kontaminasi. Setiap komponen PCR dibisat dalam bentuk etiopet.

DNA genom diamplifikasi dengan primer Kit A, B, C, E, F, dan P dari teknologi Opwot, Alkemeda CA. Primer dipilih apabila primer itu menghasilkan produk amplifikasi yang jelas dan mudah dibaca sehingga memudahkan mendagnosis dan menganalisis DNA hasil amplifikasi. Primer ini dipakai secara tetap pada seluruh sampel yang dipakai dalam penelitian ini.

Siklus temperatur PCR yang digunakan pada penelitian ini adalah denaturasi awal pada suhu 94°C selama 4 menit 1 kali, denaturasi 94°C selama 1 menit, annealing pada suhu 59°C selama 1 menit, polimerisasi pada suhu 72°C selama 2 menit sebanyak 45 siklus
dan polimerisasi akhir pada suhu 72°C selama 5 menit. Setelah itu, sampel disimpan pada suhu 4°C selama satu malam.

4. Elektroforesis

Hasil amplifikasi DNA dipisahkan pasangan basanya dengan menggunakan elektroforesis gel 1,2% pada larutan TAE 1 x (Sambrook et al., 1989). Sampel DNA yang telah diamplifikasi diambil 20 μL, ditambah dengan loading buffer dengan komposisi 5× DNA:loading buffer, dan dihomogenkan dengan mikropipet agar bercampur rata. Kemudian, sampel dimasukkan ke dalam sumur elektroforesis gel. Ke dalam alat elektroforesis sebelumnya dimasukkan larutan TAE 1 x (40 μL Tris asetat, 1 mM EDTA). Etidium bromida yang dipakai sebagai alat bantu untuk melihat dibawah sinar UV dimasukkan ke dalam agarose sewaktu membuahi sebanyak 300 μL (2 μL/mL). Berat molekul standar yang dipakai adalah DNA 1 kb ladder 5μL. Alat elektroforesis dijalankan dengan benda potensial 50 volt selama 2,5 jam. Kemudian, gel dikeluarkan dari alat elektroforesis, lalu dilakukan pengamatan pita-pita DNA hasil amplifikasi dibawah sinar UV (ultra violet). Produk amplifikasi yang diamati itu kemudian difoto dengan film Polaroid 667. Untuk memudahkan pengamatan pita-pita DNA hasil amplifikasi, semua pita DNA yang teramplifikasi dipindahkan ke plastik transparan. Hal ini dilakukan segera setelah difoto, sebab pita-pita DNA yang terbentuk jika terlalu lama di bawah paparan sinar UV akan menghilang.

Analisis Produk RAPD

Pita-pita DNA yang terbentuk dari hasil amplifikasi diberi skor. Semua pita DNA dengan laju migrasi perpendah/pegersen yang sama diasumsikan sebagai lokus yang homolog. Pita-pita DNA yang ada diberi nilai 1 dan yang tidak ada diberi nilai 0. Berat molekul DNA hasil amplifikasi pasangan basanya dihitung dengan berpedoman pada migrasi DNA standar. Dalam penelitian ini DNA standar yang dipakai adalah DNA ladder 1 kb.

Penghitungan Pita DNA Spesifik (Unik) dan Polimerisisme

Pita-pita DNA yang selalu hadir pada semua sampel dari satu lokasi tertentu atau hadir pada semua sampel dari semua lokasi disebut pita DNA spesifik (unik). Pita DNA yang selalu hadir pada semua sampel nyamuk yang dibandingkan disebut pita DNA
monomorfisme sedangkan pita DNA yang hadir pada beberapa sampel yang dibandingkan disebut pita DNA polymorfisme. Penghitungan dilakukan dengan membandingkan pita-pita DNA yang hadir pada masing-masing daerah penelitian, lalu dibilang persentasenya. Jumlah total pita DNA monomorfisme, polymorfisme, dan jualah semua pita juga dibilang. Penghitungan ini dilakukan untuk masing-masing primer.

HASIL DAN PEMBAHASAN

1. Analisis Produk RAPD

<table>
<thead>
<tr>
<th>Pita DNA</th>
<th>Sampel nanmuak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>238</td>
<td>1</td>
</tr>
<tr>
<td>1868</td>
<td>1</td>
</tr>
<tr>
<td>1737</td>
<td>0</td>
</tr>
<tr>
<td>1615</td>
<td>0</td>
</tr>
<tr>
<td>1562</td>
<td>1</td>
</tr>
<tr>
<td>1396</td>
<td>1</td>
</tr>
<tr>
<td>1267</td>
<td>0</td>
</tr>
<tr>
<td>1044</td>
<td>0</td>
</tr>
<tr>
<td>971</td>
<td>0</td>
</tr>
<tr>
<td>780</td>
<td>0</td>
</tr>
<tr>
<td>475</td>
<td>0</td>
</tr>
<tr>
<td>305*</td>
<td>1</td>
</tr>
<tr>
<td>227*</td>
<td>1</td>
</tr>
</tbody>
</table>

Keterangan: * = sampel positif (1E2 - Patchan, 3E4 = Panjang), kolom 5-8 = sampel daratan rendah (5E6 = Selatan, 7E6 = Minggir), kolom 9-12 = sampel daratan tinggi (9E10 = Palem, 11E12 = Sawangan).

![Gambar 1. Elektroforeograf primer E-16. M = Marker, kolom 1-4 = sampel positif (1E2 = Patchan, 3E4 = Panjang), kolom 5-8 = sampel daratan rendah (5E6 = Selatan, 7E6 = Minggir), kolom 9-12 = sampel daratan tinggi (9E10 = Palem, 11E12 = Sawangan).](image-url)
Tabel 2. Hasil Interprestasi Pita DNA atas Dasar Ada atau Tidak Pita DNA yang Dianalisisi dengan primer E-17

| Pita DNA (Zp) | Sampel nyaman
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3449</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2065</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>2232</td>
<td>0 1 0 0 0 0 0 1 0 1 1 1</td>
</tr>
<tr>
<td>2076</td>
<td>0 0 1 1 1 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>1931</td>
<td>0 1 0 0 0 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>1670</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>1444</td>
<td>0 0 0 0 0 1 0 0 0 1 1 0</td>
</tr>
<tr>
<td>1343</td>
<td>1 1 1 0 0 0 0 0 0 1 1 1</td>
</tr>
<tr>
<td>1009</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>809</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>699</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>650</td>
<td>0 0 0 0 0 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>354</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Keterangan: 1-4 = sampel parah (182 = Patehan, 366 = Pansetan, kolom 5-8 = sampel dataran rendah (566 = Salaman, 586 = Menggir), kolom 9-12 = sampel dataran tinggi (9610 = Pekem, 11612 = Sawangan).

Gambar 2. Electromogram primer E-17; M = Marker, kolom 1-4 = sampel parah (182 = Patehan, 366 = Pansetan), kolom 5-8 = sampel dataran rendah (566 = Salaman, 586 = Menggir), kolom 9-12 = sampel dataran tinggi (9610 = Pekem, 11612 = Sawangan).
Dari hasil amplifikasi dengan primer F-04 didapat kisaran ukuran pita DNA yang dihasilkan antara 252 bp sampai 2031 bp (Tabel 3 dan Gambar 3). Distini tidak ditemukan pita spesifik (unik) untuk semua lokasi atau untuk lokasi tertentu.

<table>
<thead>
<tr>
<th>Pita DNA (bp)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2031</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1648</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1539</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1338</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1248</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1164</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1096</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1013</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>945</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>882</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>822</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>767</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>716</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>667</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>623</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>581</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>542</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>505</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>471</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>440</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>410</td>
<td>0</td>
</tr>
<tr>
<td>385</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>357</td>
<td>0</td>
</tr>
<tr>
<td>311</td>
<td>0</td>
</tr>
<tr>
<td>290</td>
<td>0</td>
</tr>
<tr>
<td>270</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>253</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: 1 = sampel parti 1 (762 = Pekan, 364 = Panjatan), kolom 5-8 = sampel dataan rendah (566 = Salaman, 768 = Minggir), kolom 9-12 = sampel dataan tinggi (910 = Parem, 1112 = Sawangan).

5-8 = en 9-gan. (pan).
Gambar 3. Elektroforeogram primer F-64; M = Marker, kolom 1-4 = sampel pantai (5a2 = Pasirpan, 3a4 = Pantigan), kolom 5-8 = sampel daratan rendah (9a6 = Salaran, 7a8 = Mangsit), kolom 9-12 = sampel daratan tinggi (9c10 = Pulaki, 11c12 = Sawangas).

Dari ketiga primer yang digunakan ada 1 (satu) primer yang tidak menghasilkan pita DNA spesifik (unik) yaitu primer F-04. Hasil amplifikasi dengan primer itu dapat dijelaskan cenderung untuk merupakan pita DNA spesifik (unik) untuk semua lokasi. Hal itu dapat dilihat pada pita ukuran 2021 bp pada primer F-04. Pada pita itu terdapat hanya satu sampel dengan nilai 0 (pita tidak muncul). Dari hasil amplifikasi primer F-64 cenderung dicatat pita spesifik (unik) untuk sampel nyamuk yang bersal dari daratan tinggi, yaitu pita ukuran, 1013 bp dan 311 bp pada primer F-34. Pada masing-masing pita terdapat satu sampel dengan nilai 0 (pita tidak muncul). Hal ini mungkin disebabkan oleh beberapa hal, seperti terjadinya degradasi pada DNA sampel yang digunakan. Hayner (1995) mengemukakan bahwa variasi dan interasias pita-pita yang teramplifikasi disebabkan oleh perubahan nukleotida yang menimbul amplifikasi dan delesi pada pelekat primer terlalu jauh untuk menyebabkan amplifikasi serta inersi dan delesi yang mengubah produk amplifikasi. Dengan demikian maka pita DNA itu belum dapat dipercayai sebagai pita DNA yang spesifik (unik) untuk seluruh lokasi atau untuk lokasi tertentu.
2. Analisis Polimorfisme DNA

Berdasarkan perbedaan dan persamaan pola pita DNA hasil amplifikasi yang telah dilakukan terhadap sampel DNA nyamuk dari seluruh lokasi dengan semua primer, dapat dihitung persentase monomorfisme dan polimorfisme setiap lokasi (Tabel 4). Polimorfisme paling tinggi didapat pada daerah pantai, yaitu 80%, dilikuti oleh dataan rendah 73,13%, dan dataan rendah 72,93%. Dari hasil itu dapat disetikan bahwa nyamuk pada semua lokasi itu memiliki keanekekaraan yang cukup tinggi. Organisme yang memiliki keanekekaraan yang bervariasi akan lebih mudah lulus hidup dan berkembang biak, sehingga populasi di alam mempunyai kapadatan yang tinggi. Organisme vektor memungkinkan semakin banyak pulsa untuk kontak dengan hoeses untuk menghisap darah dan berpengaruh terhadap penularan penyakit antar-hoses yang digigit. Wallis et al., (1984) menegaskan bahwa ada hubungan antara keanekekaraan dengan adaptasi untuk lulus hidup. Pada umumnya semakin tinggi tingkat keanekekaraan organisme, semakin tinggi pula kemampuan organisme itu untuk dapat menyesuaikan diri dengan perubahan lingkungan, dan lokasi geografis juga dapat mempengaruhi tingkat keanekekaraan genetik suatu organisme.

Tabel 4. Perbandingan Persentase Pita DNA yang Monomorfisme dan Poli-morfisme Masing-masing Lokasi

<table>
<thead>
<tr>
<th>Lokasi</th>
<th>Primer</th>
<th>Mono-</th>
<th>Jumlah</th>
<th>Poli-</th>
<th>Jumlah</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>morfisme</td>
<td>total monomorfisme</td>
<td>morfisme</td>
<td>total polimorfisme</td>
<td>pita DNA</td>
</tr>
<tr>
<td>Pantai</td>
<td>E-16</td>
<td>4</td>
<td>6</td>
<td>32</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-17</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>F-04</td>
<td>0</td>
<td>(20%)</td>
<td>21</td>
<td>(80%)</td>
<td>40</td>
</tr>
<tr>
<td>Dataran</td>
<td>E-16</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-17</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>F-04</td>
<td>3</td>
<td>(27,03%)</td>
<td>14</td>
<td>(72,93%)</td>
<td></td>
</tr>
<tr>
<td>Tinggi</td>
<td>E-17</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>F-04</td>
<td>2</td>
<td>(26,85%)</td>
<td>20</td>
<td>(73,15%)</td>
<td></td>
</tr>
</tbody>
</table>
KESIMPULAN

1. Tes dapat variasi genetik An. aconitus dari pantai (Patekan & Panjatan), daratan rendah (Salaman & Minggir), serta daratan tinggi (Fakem & Sawangan) dalam bentuk polimorfisme genotyp (intrapopulasi).
 a. Ukuran pita DNA nyamuk An. aconitus yang dapat diamplifikasi dengan 3 primer (E-16, E-17 dan F-04) berkisar antara 178 dengan 4121 bp.
 b. Pita DNA spesifik (unik) untuk semua kicauan sampel nyamuk adalah 227 bp, 305 bp, dan 436 bp (primer E-16), 364 bp, 1005 bp, 1760 bp, dan 2383 bp (primer E-17). Karena primer ini berpotensi untuk digunakan sebagai identifikasi (kunci taksonomi) nyamuk An. aconitus.

2. Analisis pita DNA secara kualitatif menunjukkan tingkat polimorfisme untuk daerah pantai 80%, daratan tinggi 73,13%, dan untuk daratan rendah 72,93%.

DAFTAR PUSTAKA

Reid, J.A. 1968. *Anopheles Mosquitoes of Malaya and Borneo. Studies from The Institute for Medical Research Malaysia No.51.* Government of Malaysia.

