PENGARUH SUHU TEMPER TERHADAP
STRUKTUR MIKRO DAN SIFAT MEKANIS BAJA
KARBON ASSAB 760

THE INFLUENCE OF TEMPERING TEMPERATURE TO MICRO
STRUCTURE AND MECHANICAL CHARACTERISTIC OF CARBON
STEEL ASSAB 760

Suhardi1, Viktor Malau2

Program Studi Teknik Mesin
Program Pascasarjana Universitas Gadjah Mada

ABSTRACT

Carbon steel ASSAB 760 is a medium carbon steel, which has a
content of 0.5%, and has a microstructure of ferrite and pearlite,
tensile strength of 78 kg/mm², impact energy of 27 joule and hardness
of 12 HRC. By heat treatment process, hardening and tempering can be
improved the physical properties of the steel. Hardening process by pre-
heating to 650°C was increased to 870°C, with holding time of 5
minutes, and then immersed in water. Tempering process had been
done by changing the temperature of 100°C, 200°C, 300°C, 400°C, 500°C,
and 600°C.

The results of the research showed that the tensile strength of the
steel was 81 – 115 kg/mm² (depend on tempering temperature), the
impact energy was 34 – 51 joule (at 500°C and 600°C), the hardening
was 23 – 53 HRC and the microstructure was martensite, a small
quantity of azeitate and residual carbides.

Key word : heat treatment, tempering temperature, medium carbon steel.

PENGANTAR

Baja karbon banyak digunakan untuk membuat alat atau
bagian-bagian mesin. Agar mempunyai kualitas yang lebih baik, sifat
sifat mekanis alat itu perlu diperbaiki. Salah satu cara untuk
meningkatkan sifat mekanis bahan adalah dengan perlakuan panas
(heat treatment). Untuk itu maka dilakukan beberapa percobaan.

1 FKJP Universitas Sebelas Maret Surakarta
2 Fakultas Teknik Universitas Gadjah Mada

185
Tujuan percobaan ini adalah untuk mengubah struktur mikro bahan agar sisaf mekanisnya dapat meningkat. Lingkah yang dilakukan pada percobaan ini adalah melalui pengerasan dengan pemanasan sampai suhu tertentu, disubhan pada selang waktu tertentu, dikejut dalam air, kemudian ditemper pada temperatur 100°C, 200°C, 300°C, 400°C, 500°C, dan 600°C selama 60 menit. Pengujian yang dilakukan adalah penelitian struktur mikro, uji tarik, uji impak, dan uji kekerasan.

Baja Canai panas dengan pendiningan lambat mempunyai struktur perlak dengan kerat bebas atau sementit bebas, tergantung pada kandungan karbon (Doan, 1952). Pendiningan yang lambat pada baja mengakibatkan suatu keadaan yang relatif lunak dari plastis.

Proses pengerasan pada dasarnya terbagi dalam dua kegiatan, yaitu pemanasan dan pengejutan. Pengerjaan pertama ialah memasukkan baja pada suatu temperatur yang lebih tinggi dari temperatur kritis.

Tujuan pengerjaan pemanasan adalah untuk mengubah baja dari keadaan normal ke suatu struktur larutan padat yang disebut austenit (Luikman dkk., 1986). Setelah diupah struktur austenit, kemudian dilaksanakan pengerjaan yang kedua ialah pengeringan cepat (kejut) yang menghasilkan struktur martensit, yang memiliki sisaf yang keras dan relatif rapuh.

Pada dasarnya baja yang telah dikeraskan bersifat rapuh dan tidak cocok untuk digunakan. Melalui penemperan, kekerasan dan kerapuhan dapat diturunkan sampai memenuhi persyaratan.
Bila kekerasan tunar, kekuatan tarik akan turun, tetapi keleutan dan ketagguhan baja akan meningkat (Ametead, 1985).

Penguatan tarik bertujuan untuk mengetahui sifat-sifat mekanik dan perubahan-perubahan suatu logam terhadap pembelahan tarik. Kekuatan tarik maksimum (Ultimate tensile strength) adalah beban maksimum dibagi luas penampang lintang awal benda uji (pesimen).

\[\sigma_t = \frac{F_{\text{ma}}}{A_0} \] \hspace{1cm} (1)

Regangan teknik pada saat patah adalah:

\[\varepsilon_p = \frac{L_f - L_i}{L_i} \quad \text{(\%)} \] \hspace{1cm} (2)

Menurut Surdia dan Saito (1984), keleutan dinyatakan sebagai energi yang diabsorpsi oleh bahan sampai pada titik patah.

Besarnya tenaga untuk mematahkan (energi impak):

\[W = F_{\text{p}} (h_i - h_f) \text{ Joule} \] \hspace{1cm} (3)

Penguatan kekerasan menggunakan uji kekerasan Rockwell-C. Pemilihan uji kekerasan Rockwell-C didasarkan pada sifat-sifat cepat, mampu untuk membedakan perbedaan kekerasan yang kecil pada baja yang dipusak (hardening) (Deiter, 1987). Penguatan kekerasan Rockwell-C (C = Cons) biasanya dipakai untuk logam yang keras atau dikeras. Indentor terbuat dari bahan intan yang berbentuk kerucut dengan besarnya sudut 120°. Angka kekerasan Rockwell-C (HRC) adalah selisih antara suatu konstante dan dalamnya belas penekanan permanen e yang dibagi dengan 0,002 mm.

Angka kekerasan Rockwell-C (HRC)

\[\text{HRC} = 100 - \frac{e(\text{mm})}{0,002\text{mm}} \] \hspace{1cm} (4)

CARA PENELITIAN

Bahan yang digunakan untuk percobaan adalah baja karbon ASSAB 760, yang mengandung unsur-unsur : 0,50% C, 0,30% Si, 0,3% Hn dan 0,04% S. Bahan percobaan berbentuk batang bulat 16 mm. Untuk menyesuaikan dengan mesin-mesin penguji dan alat-alat yang...
diperlukan untuk percobaan, batang baja bulat itu dipotong-potong kemudian di machining menjadi batang spesimen standar (Gambar 1). Batang spesimen untuk uji tarik, uji impak, uji kekerasan, dan struktur mikro masing-masing berjumlah 28 buah.

Gambar 1. Batang Spesimen

Batang spesimen dikelompokkan sesuai dengan proses perlakuan yang akan dilakukan dan diberi kode. Kode spesimen dan proses perlakuan terlihat pada Tabel 1.
<table>
<thead>
<tr>
<th>No</th>
<th>Uji Tarik</th>
<th>Uji Impak</th>
<th>Uji Kekerasan</th>
<th>Proses Perlakuan</th>
<th>Subu</th>
<th>Quench</th>
<th>Temper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A₁</td>
<td>F₁</td>
<td>K₀</td>
<td>Quench</td>
<td>870°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>A₂</td>
<td>F₂</td>
<td>K₀</td>
<td>Quench</td>
<td>870°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>A₃</td>
<td>F₃</td>
<td>K₀</td>
<td>Quench</td>
<td>870°C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>B₁</td>
<td>G₁</td>
<td>L₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>100°C</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>B₂</td>
<td>G₂</td>
<td>L₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>100°C</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>B₃</td>
<td>G₃</td>
<td>L₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>200°C</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>B₄</td>
<td>G₄</td>
<td>L₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>300°C</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>C₁</td>
<td>H₁</td>
<td>M₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>400°C</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>C₂</td>
<td>H₂</td>
<td>M₂</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>400°C</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>C₃</td>
<td>H₃</td>
<td>M₃</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>400°C</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>C₄</td>
<td>H₄</td>
<td>M₄</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>400°C</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>D₁</td>
<td>I₁</td>
<td>N₁</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>600°C</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>D₂</td>
<td>I₂</td>
<td>N₂</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>600°C</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>D₃</td>
<td>I₃</td>
<td>N₃</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>600°C</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>D₄</td>
<td>I₄</td>
<td>N₄</td>
<td>Quench & Temper</td>
<td>870°C</td>
<td>600°C</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>E₁</td>
<td>J₀</td>
<td>P₀</td>
<td>Tanda perlakuan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>E₂</td>
<td>J₁</td>
<td>P₁</td>
<td>Tanda perlakuan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>E₃</td>
<td>J₂</td>
<td>P₂</td>
<td>Tanda perlakuan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

mikro : mikroskop optik merk Olympus. Untuk perlakuan panas : oven Alcohol, tang penepit, bak bering air, sarung tangan, masker.

Prosedur percobaan pengerasan dan penempesan meliputi penyajian media pening dan yang bervapori air di dalam bak yang dekat dengan oven (tungku pemanas), tang penepit, dan sarung tangan. Selanjutnya dilakukan pengawasan spesimen berdasarkan kelompok perlakuan dan jenis pengujian yang akan dilakukan. Semua spesimen yang sudah dirangkai untuk uji tarik, uji impas, dan uji kekerasan yang masing-masing dibagi menjadi 7 kelompok (seluruh 75 batang), dimasukkan ke dalam tungku, dengan penempatan selinggah tidak berimpit satu sama lain. Tungku pemanas dihidupkan dan di setting dengan laju pemanasan 400 C/ menit. Kemudian, pemanasan dimulai dengan suhu 870 C dan dihentikan (holding time) selama 5 menit. Semua rangkaian spesimen masing-masing dikeluarkan satu per satu dan dikeluarkan dalam bak air, lalu dibersihkan dari kotoran dan dikeringkan. Rangkaian spesimen kelompok R, U, dan X dimasukkan kembali ke dalam tungku kemudian dipanaskan sampai suhu tetap 100 C selama 75 menit. Setelah itu rangkaian spesimen kelompok B, C, dan L dimasukkan ke dalam tungku lalu dipanaskan sampai suhu temper 800 C selama 90 menit. Selanjutnya rangkaian spesimen kelompok S, V, dan Y dimasukkan ke dalam tungku dan dipanaskan sampai suhu temper 300 C selama 105 menit, rangkaian spesimen kelompok H, dan M dimasukkan kembali ke dalam tungku lalu dipanaskan sampai suhu temper 400 C selama 120 menit. Aslinya spesimen kelompok T, W, dan Z dimasukkan kembali ke dalam tungku kemudian dipanaskan sampai suhu temper 500 C selama 135 menit.

HASIL DAN PEMBAHASAN

Kondisi dan sifat bahan dasar berdasarkan pengujian tarik, diperoleh kekuatan tarik maksimum rata-rata 77,5 kg/m2, energi impak rata-rata 27 Joule, dan kekerasan rata-rata HRC 12, dengan struktur mikro fasa serisi dan perlilit.

Setelah dilakukan percobaan pengerasan panas, yaitu proses pengerasan (hardening) dengan suhu pemanasan 870 C, spesimen dikeluarkan dalam air, lalu disusul dengan penempatan dengan variasi suhu temper 100 C, 200 C, 300 C, 400 C, 500 C, dan 600 C; kemudian didinginkan di udara tenang.
Struktur mikro (gambar 2) menunjukkan fasa martensit temper, austenit dalam jumlah kecil dan karbid sis yang bertingkat tingkat.

Gambar 2. Struktur Mikro Baja Karbon ASSAB 760

a) temper 100°C, b) temper 200°C, c) temper 300°C,

d) temper 400°C, e) temper 500°C dan f) temper 600°C.

Hasil pengujian tarik, uji impak dan uji kekerasan, data-data hasil pengujian tarik, pengujian impak, dan pengujian kekerasan bahan baja ASSAB 760 dengan perlakuan panas pengerasan, dan penemperan dapat dirangkum dalam Tabel 2.
Tabel 2. Ringkasan Hasil Analisis Uji Tensil, Uji Impak dan Uji Kekerasan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Proses Perlakuan</th>
<th>Kekuatan Rata-rata</th>
<th>Kekerasan Rata-rata</th>
<th>Energi Impak Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td></td>
<td>σ_t(kg/mm²)</td>
<td>HRC</td>
<td>W(Indue)</td>
</tr>
<tr>
<td>A, J, K</td>
<td>Quench</td>
<td>105</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>R, U, X</td>
<td>σ1200°C</td>
<td>Jatap</td>
<td>35</td>
<td>3.5</td>
</tr>
<tr>
<td>K, L</td>
<td>σ200°C</td>
<td>115</td>
<td>52</td>
<td>12</td>
</tr>
<tr>
<td>S, Y</td>
<td>σ300°C</td>
<td>107</td>
<td>46</td>
<td>18</td>
</tr>
<tr>
<td>C, H, M</td>
<td>σ400°C</td>
<td>106</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>L, W, Z</td>
<td>σ500°C</td>
<td>57</td>
<td>35</td>
<td>54</td>
</tr>
<tr>
<td>D, L, N</td>
<td>σ600°C</td>
<td>80</td>
<td>23</td>
<td>53</td>
</tr>
<tr>
<td>E, I, P</td>
<td>σ700°C</td>
<td>77.5</td>
<td>13</td>
<td>27</td>
</tr>
</tbody>
</table>

Dari Tabel 2 pengaruh suhu temper pada kekuatan terik dapat dibaca grafiknya pada Gambar 3.

![Diagram Gambar 3. Pengaruh Suhu Temper terhadap Kekuatan Tensil Baja ASSAB 760](image-url)

Dari specimen bahan dasar didapat hasil rerata kekuatan terik 75 kg/mm² berada pada range yang dieluarka patrik 60 - 80 kg/mm². Bahan dasar yang mendapat perlakuan pengerasan (hardening) didapat hasil rerata 203 kg/mm². Selanjutnya, bahan dasar yang mengalami perlakuan panas hardening dan tempering dengan singkatan suhu temper dari 300°C, 400°C, 500°C, 600°C, 700°C, dan 800°C memberikan rerata kekuatan berturut-turut : suhu temper
1000 C gagal, 115 kg/mm², 107 kg/mm², 106 kg/mm², 87 kg/mm², dan 80 kg/mm². Berdasarkan hasil-hasil itu dapat disimpulkan bahwa:
1) terdapat penurunan kekuatan tarik bahan yang mengalami proses hardening dan tempering pada kenaikan suhu tempering, 2) ada pengaruh suhu temper terhadap kekuatan tarik bahan baja ASSAB 760.
Dari Tabel 2, hubungan antara energi impak dengan suhu temper dapat dibuat grafiknya seperti Gambar 4.

![Gambar 4. Pengaruh Suhu Temper Terhadap Energi Impak Baja ASSAB 760](image)

tinggi suhu temper, nilai kekerasannya makin naik, ada pengaruh suhu temper terhadap energi impak bahan baja ASSAB 760.

Pengaruh suhu temper terhadap kekerasan baja ASSAB 760 tertera pada Tabel 2 dan terlihat pada Gambar 5.

![Gambar 5. Pengaruh Suhu Temper terhadap Kekerasan Baja ASSAB 760](image_url)

KESIMPULAN DAN SARAN-SARAN

Kesimpulan

Berdasarkan hasil analisis data dan pembahasan tentang pengaruh perubahan suhu temper pada baja karbon ASSAB 760 terhadap sifat fisik dan mekanis, maka dapat ditarik kesimpulan berikut.
1) Bahan dasar baja karbon ASSAB 760 yang mempunyai struktur mikro ferit dan perlite, setelah pengerasan berstruktur mikro martensit, dan pada proses penemperan diperoleh struktur mikro martensit temper, austenit dalam jumlah kecil, dan karbid sisa.

2) Kenaikan suhu temper dari 200°C sampai 600°C menyebabkan turunnya kekuatan tarik dari 115 kg/mm² menjadi 80 kg/mm².

3) Kenaikan suhu temper dari 100°C sampai 600°C menyebabkan kenaikan energi impak pada suhu temper 500°C dan 600°C; tetapi menyebabkan penurunan energi impak pada suhu temper 400°C, 300°C, 200°C, dan 100°C.

4) Kenaikan suhu temper dari 100°C sampai 600°C menyebabkan turunnya kekerasan dari 53 HRC sampai 23 HRC.

Saran

1) Penelitian ini hendaknya dikembangkan dengan meneliti ketahanan aus baja karbon ASSAB 760 setelah dilakukan proses perlakuan panas untuk keperluan pembuatan alat-alat perkakas pertanian (cangkul misalnya).

2) Penelitian ini juga dapat dikembangkan dengan lamanya penerapan variasi kemudian diselidiki sifat fisik dan mekanisnya.

UCAPAN TERIMA KASIH

Dengan selesainya pelaksanaan penelitian dan penulisan tesis ini, maka penulis menyampaikan ucapan terima kasih kepada:

1) Bapak DR. Ir. Indarto, DEA., selaku Ketua Jurusan Teknik Mesin Fakultas Teknik UGM.
2) Bapak Ir. J Made Suardjaja, MSc. PhD., selaku Pengelola Program Studi Teknik Mesin UGM.
3) Bapak Ir. Samsudin, selaku Ketua Laboratorium Metalurgi, Jurusan Teknik Mesin Fakultas Teknik UGM.

DAFTAR PUSTAKA

ASSAB Club Indonesia, "Perlakuan Panas", PT. Tira Austenite, Semarang.

