
KECUKUPAN HARA Ca dan Mg DI KEBUN TEH PT PAGILARAN

Nasih Widyayu Wiyono, Abdul Syukur & Makruf Nuruddin
Fakultas Pertanian UGM

Penelitian ini dilakukan dengan mengambil contoh tanah dan daun teh di kebun ini PT. Pagilaran, dilanjutkan dengan analisis di laboratorium, dimaksudkan untuk menghasilkan tingkat kecukupan Baja Ca dan Mg dalam tanah dan daun teh, dan hubungannya dengan produksi produksi teh.

Pengambilan contoh tanah secara komposit dan daun teh dari 25 tanaman, dilakukan setiap bulan Februari 1999, dari 16 bibit kebun yang menghasilkan dengan populasi > 8.000 tanaman/ha dan umur panjang 18-42 bulan.

Hasil penelitian menunjukkan kadar Mg dalam daun teh berharkat kurang, Mg tersedia dalam tanah sangat rendah dan ada benih yang sangat nyata antara kadar Mg tersedia tanah dengan produksi pucuk teh. Untuk itu perlu dilakukan penelitian penambahan Mg dari bahan yang memiliki reaksi fisikologi asam dan dalam bentuk PMT (Pupuk Mojenak Lepas Terkendali) dengan dosis 35,55-45,18 kg hektar.

Soil and plant analysis was chosen to reveal the status of Ca and Mg on soil and plant and their relationship with tea production. Leaf and soil sampling were conducted during February 1999. Leaf samples were taken from 25 plants from selected productive block had plant density more than 8,000/ha and 16-24 months aged after pruning. Soil samples were taken compositely from each block. The result showed Mg content both on soil and plant were insufficient. There was a strong correlation between soil content Mg with tea production. It would be better to raise available Mg by applying acidic Mg fertilizer as slow release compound fertilizer.

Key words: soil and plant analysis, Ca and Mg, tea production.

PENDAHULUAN

Tanaman teh harus dipert internship pendek sebagai perdu untuk dapat terus-menerus menghasilkan pucuk. Penelitian pucuk peko (bud) dan daun teh perduan dilakukan jika sebagian besar perduan tehcn kelumitakan tuna di atas bidang pemelihaksan yang daat berbentuk meja. Daun-daun di bawah bahan pemelihaksan (daun indung) dibfsinan tidak dikerjan yang berfungsi memilih bahan kegiatan pertumbuhan perduan. Daun-daun ini sangat aktif memanfaatkan pucuk baru, karena masih muda dan menerima sinar matahari yang maksimum (Darmawijaya, 1982).

Pengapian harus terpadu merupakan tuntunan yang harus dikerjan dalam pengusahaan tanaman industri yang secara intensif menganalisa cara dalam tanah dan dipanganakan ke bari dari wilayah penanaman tersebut. Upaya memelihara komponen kacau bahan merupakan kunci keberhasilan agar usaha perkebunan teh dapat berkelanjutan.
Tampak pengembalian hara ke dalam tanah baik kek berumur atau pengembalian pengaruh sebagian merujuk kepada ketersediaan hara yang cukup dan juga berimbang dengan hara lain dalam tanah, suatu hara akan menjadi faktor penentu produksi. Ketersediaan hara dalam tanah merupakan keenam antara mana dengan hara ke dalam tanah dan kehilangan hara dari tanah tersebut.

Pengambilan hara pada perkebunan teh berupa daun paruk untuk dibuat teh (12,5% berat kering tanaman) dan cabang atau rasing yang dipangkas (40% berat kering tanaman) (Ranganathan, 1999). Jumlah pengambilan hara untuk setiap 100 kg teh jadi dan untuk produksi teh jadi 2.000 kg/ha/tahun disajikan pada Tabel 1.

<table>
<thead>
<tr>
<th>Hara</th>
<th>100 kg teh jadi</th>
<th>per ha per tahun *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>daun</td>
<td>cabang</td>
</tr>
<tr>
<td>N</td>
<td>4,0 kg</td>
<td>3,2 kg</td>
</tr>
<tr>
<td>FeO</td>
<td>1,15 kg</td>
<td>1,9 kg</td>
</tr>
<tr>
<td>K2O</td>
<td>2,4 kg</td>
<td>0,7 kg</td>
</tr>
<tr>
<td>CaO</td>
<td>0,8 kg</td>
<td>1,1 kg</td>
</tr>
<tr>
<td>MgO</td>
<td>0,42 kg</td>
<td>0,8 kg</td>
</tr>
<tr>
<td>Al</td>
<td>100 g</td>
<td>160 g</td>
</tr>
<tr>
<td>Cl</td>
<td>5 g</td>
<td>10 g</td>
</tr>
<tr>
<td>Na</td>
<td>8 g</td>
<td>24 g</td>
</tr>
<tr>
<td>Zn</td>
<td>4 g</td>
<td>11 g</td>
</tr>
<tr>
<td>B</td>
<td>3 g</td>
<td>6 g</td>
</tr>
<tr>
<td>Cu</td>
<td>4 g</td>
<td>9 g</td>
</tr>
<tr>
<td>Fe</td>
<td>28 g</td>
<td>24 g</td>
</tr>
<tr>
<td>Mn</td>
<td>85 g</td>
<td>72 g</td>
</tr>
</tbody>
</table>

Sumber: Ranganathan (1999)
* prediksi bahan kering 2.000 kg/ha/tahun

Tahana hara dalam tanah dapat digunakan sebagai pedoman dalam menetapkan rekomendasi pemupukan atau dalam penentuan kesehatan bahan untuk suatu komoditas tertentu. Analisis tanah untuk tujuan evaluasi kesehatan lah yang diberikan sebelum usia pertama dalam sedangkan untuk perubahan rekomendasi pupuk diberikan setiap 5 tahun sekali. Dalam kriteria tanah (Tabel 2) zasing-masing sifat tanah dikeompak ke dalam kelas sangat rendah, rendah, sedang, tinggi dan sangat tinggi (Puslitatan, 1994). Pengelompokan ini pada prinsipnya ditemukan atas besarnya tanggapan tanaman secara umum (Lopesu, 1994). Menurut Puslitatan (1994) suatu bahan dimiliki sangat sesuai (51) untuk tanaman teh jika mengisi kek > rendah (> 2 m/100 g). Ca tersedia dan Mg tersedia dalam tanah belum menjadi bahan pertimbangan.
<table>
<thead>
<tr>
<th>Kolas</th>
<th>Koleksi (%) (me%)</th>
<th>K</th>
<th>Na</th>
<th>Mg</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat rendah</td>
<td><5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.4</td>
<td><2</td>
</tr>
<tr>
<td>Rendah</td>
<td>5-16</td>
<td>0.1 - 0.2</td>
<td>0.1 - 0.3</td>
<td>0.4 - 1.0</td>
<td>2 - 5</td>
</tr>
<tr>
<td>Sedang</td>
<td>>16-24</td>
<td>0.3 - 0.5</td>
<td>0.4 - 0.7</td>
<td>1.1 - 2.0</td>
<td>6 - 10</td>
</tr>
<tr>
<td>Tinggi</td>
<td>>24-40</td>
<td>0.6 - 1.0</td>
<td>0.8 - 1.0</td>
<td>2.1 - 8.0</td>
<td>11 - 20</td>
</tr>
<tr>
<td>Sangat tinggi</td>
<td>>40</td>
<td>>1.0</td>
<td>>1.0</td>
<td>>8.0</td>
<td>>20</td>
</tr>
</tbody>
</table>

Sumber: Pustakaan (1994)

Program pemupukan di kebun inti 77 Paguran yang ada dewasa ini terbatas pada unsur N, P dan K. Pembentukan pupuk menggugatkan dosis yang tinggi untuk seluruh kebun tanpa membedakan sifat tanah dan klen teh pada setiap blok kebun yang diusahakan. Unsur hara yang lain, juga belum dipertimbangkan.

Gambar 1. Hubungan kadar hara dan hasil

Kalsium (Ca) termasuk harga yang diperlukan oleh tanaman dalam jumlah yang besar (makro). Kandungan Ca dalam tanaman secara umum adalah 0,2 - 3,0 % berat kering daun, dengan nilai kecukupan 0,30 - 1,0 % berat kering daun. Ca termasuk harga yang tidak lancar, gejala kekurangan dimulai pada titik tumbuh, umur akar dan daun muda. Kadar Ca yang berlebihan akan menghambat kekahanan harga Mg atau K dalam tanaman (Jones et al. 1991).

Kadar Ca harus kecukupan dalam daun telah menurut Jones et al. (1991) sebesar 0,4 - 0,6 % sedangkan menurut Reuter et al. (1997) adalah 0,5%. Sumber masukan harga Ca antara lain: gipsum (22,5% Ca), batuan fosfat (33,1 % Ca), triple Super Phosphate (19,6 % Ca), Super Phosphate (36,6 % Ca), kalsit (40 % Ca) dan dolomit (20-45 % Ca) (Anonim, 1984).

Magnesium (Mg) juga termasuk unsur harga makro, merupakan penyusun inti kolorell. Kadar Mg dalam tanaman berkisar 0,15-0,01% berat kering daun, dengan nilai kecukupan untuk kebanyakan tanaman sekitar 0,25% berat kering daun. Kenaikan ini termasuk harga yang lancar. Untuk Mg termasuk poling kalah untuk bersang dengan kalium yang lainnya (Jones et al. 1991). Kadar harga Mg arus kecukupan dalam daun telah menurut Jones et al. (1991) sebesar 0,15 - 0,30 % sedangkan menurut Reuter et al. (1997) adalah 0,87 - 0,24 %. Sumber masukan harga Mg antara lain: garam epoc (MgSO₄.7H₂O: 9,6 % Mg), kalsiter (MgSO₄.5H₂O: 18,3 % Mg), dolomit (MgCO₃.CaCO₃: 5-20 % Mg) dan magnesit (MgCO₃: 45 % Mg) (Anonim, 1984).

Penelitian ini dikerjakan dengan tujuan: (1) mengetahui tingkat kecukupan harga Ca dan Mg dalam tanah dan daun teh, (2) mengetahui hubungan kadar Ca dan Mg tanah dan tanaman, dan dengan produk pencuk teh, dan (3) membentuk rekomendasi pemupukan Ca dan Mg.

Bahan DAN METODE

Penelitian ini merupakan kegiatan dari penelitian terhadap (Yuwoono & Handayani, 1999) yakni dilaksanakan di kebun ini. Data yang terdapat di Kabupaten Batang, Jawa Tengah. Kebun bersertifikat berdasarkan keterangan 79% sampai 1400 m di atas permukaan laut, sedangkan besarnya lahan memiliki kandungan karbon sebesar 0.02
tanah. Berdasarkan klasifikasi iklim menurut Oldeman termasuk dalam

Tabel 3. Harga kadar harga daun teh

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Jones et al. (1991)* rendah</th>
<th>Reuter (1986)* kadar</th>
<th>tinggi</th>
<th>atau kritik</th>
<th>cukup</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>< 3,80</td>
<td>3,80 - 4,80</td>
<td>> 4,80</td>
<td>3,8</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>< 0,19</td>
<td>0,19 - 0,25</td>
<td>> 0,25</td>
<td>0,40 - 0,42</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>< 1,80</td>
<td>1,80 - 0,20</td>
<td>> 0,20</td>
<td>1,57</td>
<td>-</td>
</tr>
<tr>
<td>Ca</td>
<td>< 0,40</td>
<td>0,40 - 0,60</td>
<td>> 0,60</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>Mg</td>
<td>< 0,15</td>
<td>0,15 - 0,30</td>
<td>> 0,30</td>
<td>0,07 - 0,24</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>< 0,10</td>
<td>0,10 - 0,30</td>
<td>> 0,30</td>
<td>0,1 - 0,3</td>
<td>-</td>
</tr>
</tbody>
</table>

*Keterangan: *) daun le 3 padu tunas baru, **) daun tua.*

Tabel 4. Blok kebum untuk lokasi pengambilan contoh lahan dan tanaman

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A27</td>
<td>A27</td>
<td>Pekon Kedung B</td>
<td>13.50</td>
<td>BIB</td>
<td>1899-1914</td>
<td>9</td>
<td>9,116</td>
</tr>
<tr>
<td>K1</td>
<td>K1</td>
<td>Kayakandang</td>
<td>4.25</td>
<td>BIB</td>
<td>1950-1953</td>
<td>20</td>
<td>9,332</td>
</tr>
<tr>
<td>C3</td>
<td>C3</td>
<td>Pagerpek II</td>
<td>9.00</td>
<td>BIB</td>
<td>1894-1914</td>
<td>21</td>
<td>8,800</td>
</tr>
<tr>
<td>K10</td>
<td>K10</td>
<td>Sumber III</td>
<td>16.76</td>
<td>BIB</td>
<td>1981</td>
<td>27</td>
<td>12,000</td>
</tr>
<tr>
<td>K7</td>
<td>K7</td>
<td>Kemun II</td>
<td>12.00</td>
<td>BIB</td>
<td>1983-1914</td>
<td>50</td>
<td>9,806</td>
</tr>
<tr>
<td>P7</td>
<td>P7</td>
<td>Pecun Kebun</td>
<td>4.65</td>
<td>BIB</td>
<td>1972</td>
<td>31</td>
<td>10,000</td>
</tr>
<tr>
<td>P10</td>
<td>P10</td>
<td>Dryeg</td>
<td>6.21</td>
<td>BIB</td>
<td>1990</td>
<td>31</td>
<td>10,045</td>
</tr>
<tr>
<td>P9</td>
<td>P9</td>
<td>Sumber II</td>
<td>3.49</td>
<td>BIB</td>
<td>1949-1969</td>
<td>32</td>
<td>9,000</td>
</tr>
<tr>
<td>P9</td>
<td>P9</td>
<td>Sumber IV</td>
<td>4.26</td>
<td>BIB</td>
<td>1980-1985</td>
<td>33</td>
<td>8,857</td>
</tr>
<tr>
<td>P11</td>
<td>P11</td>
<td>Karangsid</td>
<td>5.60</td>
<td>BIB</td>
<td>1975-1976</td>
<td>38</td>
<td>8,500</td>
</tr>
<tr>
<td>P12</td>
<td>P12</td>
<td>Bilam B</td>
<td>12.75</td>
<td>BIB</td>
<td>1910-1926</td>
<td>39</td>
<td>11,550</td>
</tr>
<tr>
<td>P14</td>
<td>P14</td>
<td>Karanganagko</td>
<td>11.50</td>
<td>BIB</td>
<td>1940</td>
<td>22</td>
<td>8,437</td>
</tr>
<tr>
<td>P5</td>
<td>P5</td>
<td>Pagulan III</td>
<td>4.44</td>
<td>BIB</td>
<td>1949</td>
<td>20</td>
<td>9,418</td>
</tr>
<tr>
<td>P41</td>
<td>P41</td>
<td>Sumber III</td>
<td>6.23</td>
<td>BIB</td>
<td>1992</td>
<td>24</td>
<td>11,500</td>
</tr>
<tr>
<td>P29</td>
<td>P29</td>
<td>Karanggareg</td>
<td>11.75</td>
<td>BIB</td>
<td>1968</td>
<td>30</td>
<td>11,500</td>
</tr>
</tbody>
</table>

Keterangan: * Umur setelah pangkas (bulan) pada awal bulan Februari 1999
HASIL DAN PEMBAHASAN

Kalium (Ca)
Kadar Ca dalam daun teh berkisar antara 4.235,17 ppm (P11) sampai 5.186,74 ppm (P31) dengan nilai rerata 4.605,57 ppm. Semua nilai tersebut berada pada tahana cukup untuk tanaman teh menurut Jones et al. (1991) yakni pada kisaran 0,4 - 0,6%. Akan tetapi jika merujuk pada Reuter (1997) sebagian besar angka tersebut masih dibawah harkat rendah (< 0,5%). Kadar Ca dalam daun teh tidak memiliki korelasi yang nyata dengan produksi pucuk teh, namun ada kecenderungan kenaikan kadar Ca ovam teh akan diikuti oleh kenaikan produksi pucuk teh.

Kadar Mg dalam daun teh berkisar antara 4,93 me/100 g (P31, harkat rendah) sampai 6,73 me/100 g (K11, harkat sedang) dengan nilai rerata 5,99 me/100 g dengan harkat rendah (Puslitteaks, 1994). Dalam buku panduan ke sesuaian ilman yang diterbitkan oleh Puslitteaks (1994) tidak ada kriteria nilai Mg tersedia dalam tanah untuk ke sesuaian tanaman teh, yang ada bertaik dengan retensi harta adalah nilai KFP. Laban diunh sangat sesuai (S1) jika memiliki KFP > rendah (5 me/100 g). Laban milik PT Pagiliran memiliki KFP rerata 41,26 me/100 g dengan demikian sangat sesuai untuk tanaman teh.

Kadar Mg tersedia dalam tanah tidak memiliki korelasi yang nyata dengan produksi pucuk teh, namun ada kecenderungan kenaikan kadar Mg tersedia dalam tanah akan diikuti oleh kenaikan produksi pucuk teh.

Gambar 2. Huizungan Kadar Mg Tersedia Tanah Dengan Produksi Pucuk Teh.

Magenesium (Mg)
Kadar Mg dalam daun teh berkisar antara 1,206,99 ppm (P41) sampai 1,589,26 ppm (A21) dengan nilai rerata 1,402,56 ppm. Sebagian besar nilai tersebut berada pada tahana kurang untuk tanaman teh menurut Jones et al. (1991) yakni pada kisaran 0,15 - 0,30%. Jika merujuk pada Reuter (1997) semua nilai tersebut berada pada tahana cukup (0,07 - 0,24%). Kadar Mg dalam daun teh tidak memiliki korelasi yang nyata dengan produksi pucuk teh, namun ada kecenderungan kenaikan kadar Mg daun teh akan diikuti oleh kenaikan produksi pucuk teh.

Kadar Mg tersedia dalam tanah berkisar antara 0,323 me/100 g (P3, harkat sangat rendah) sampai 0,054 me/100 g (P2, harkat rendah) dengan nilai rerata 0,399 me/100 g dengan harkat sangat rendah (Puslitteaks, 1994). Kadar Mg yang sangat rendah ini dapat menjadi faktor pembatas produksi pucuk teh.
Kadar Mg tersedia dalam tanah membentuk korelasi yang sangat nyata dengan produksi pucuk teh (Gambar 2). Hubungan antara kadar Mg tersedia dalam tanah dengan produksi pucuk teh (Y = kg/ha/b) dapat dinyatakan dengan persamaan berikut:

\[Y = 1.464X + 36.80 \]

(y = 1.716**, n=15). Berdasarkan kenyataan di atas perlu pembaikan Mg ke daerah tersebut untuk menghilangkan faktor pembatas dan untuk meningkatkan produksi pucuk teh.

Kadar Mg tersedia tanah tidak mempunyai korelasi yang nyata dengan kadar Mg dalam daun teh, namun ada kecenderungan peningkatan kadar Mg dalam tanah akan dikuuti oleh peningkatan kadar Mg dalam daun teh.

Imbangan Hara K:Ca:Mg Tersedia

Dalam Tanah

Membuat Sya et al. (1981) subhanakan kaitan antara K:Ca:Mg dalam kompakeks pertukaran kation yang terlibat untuk pertumbuhan tanaman adalah 7:5:6. Dapat dipelajari ini diperoleh nilai rerata hara tersedia dalam tanah K 0,08 me/100 g, Ca 0,39 me/100 g dan Mg 0,40 me/100 g. Kadar Ca tersedia berada dalam kisaran rendah sedangkan, K dan Mg tersedia dalam tanah sangat rendah jika Ca dianggap tersedia cukup dan disetupkan pada angka 75 maka diperoleh imbangan K:Ca:Mg sebesar 1:1:1.75:5.6. Berdasarkan imbangan alat ini tersebut terlihat hara K dan Mg kesih rendah dari yang semestinya, untuk mencapai imbangan yang ideal hara K tersedia harus ditingkatkan sedikit 630% dan hara Mg tersedia ditingkatkan 323% dari keadaan yang sekarang.

Rekomendasi Pupuk

Berdasarkan hasil tersebut di atas rekomendasi pupuk dibuat buatan untuk hara Mg dengan mengacu perbedaan kadar hara daun baks dengan kadar tanah dan daun cuplikan menghitung rumus berikut:

\[H = (k-k_c) x p t x z \]

ft = hara yang akan diberikan (Mg)
k = kadar hara Mg daun baks sebesar 5,000 ppm
k_c = kadar hara Mg daun cuplikan (ppm)
p = produksi teh jadi sebesar 2,000 kg/ha/tahun
fa = nilai hara terangkapan pupuk (52.5%) dan hara dalam daun (72,5%) sebesar 42
fe = nilai hara yang diberikan dalam tanah tanam telah diperbesar tanaman sebesar 3

Rekomendasi penurunan hara Mg

Untuk pertama kali dapat dilihat pada Tabel 5. Dosis pupuk ini bersifat sementara dan dilaksanakan sebagai perbaikan permukulan. Setiap dalam berikutnya perlu dilakukan analisis kadar Mg dalam daun teh, hasilnya dibandingkan dengan kadar Mg daun teh baku. Bila kadar Mg dalam daun cuplikan lebih rendah, maka perlu dilakukan koreksi dosis pupuk, menurut:

\[H = H_c \times db/\text{dc} \]

H = hara yang akan diberikan
H_c = hara yang ditambahkan sebelumnya
db = kadar hara dalam daun baku
dc = kadar hara dalam daun cuplikan
<table>
<thead>
<tr>
<th>No.</th>
<th>Blok</th>
<th>Mg-daun ppm</th>
<th>Pupuk Mg kg Mg/ha/th</th>
<th>MgSO₄ Kg/ha/th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A25</td>
<td>1.580,26</td>
<td>35,55</td>
<td>176,01</td>
</tr>
<tr>
<td>2</td>
<td>A26</td>
<td>1.940,15</td>
<td>36,79</td>
<td>182,14</td>
</tr>
<tr>
<td>3</td>
<td>A29</td>
<td>1.284,83</td>
<td>43,22</td>
<td>213,99</td>
</tr>
<tr>
<td>4</td>
<td>K11</td>
<td>1.516,96</td>
<td>37,42</td>
<td>185,28</td>
</tr>
<tr>
<td>5</td>
<td>K16</td>
<td>1.269,86</td>
<td>43,60</td>
<td>215,86</td>
</tr>
<tr>
<td>6</td>
<td>K5</td>
<td>1.302,97</td>
<td>42,77</td>
<td>213,78</td>
</tr>
<tr>
<td>7</td>
<td>K7</td>
<td>1.488,15</td>
<td>38,10</td>
<td>188,65</td>
</tr>
<tr>
<td>8</td>
<td>P10</td>
<td>1.482,79</td>
<td>38,23</td>
<td>189,29</td>
</tr>
<tr>
<td>9</td>
<td>P11</td>
<td>1.412,91</td>
<td>49,99</td>
<td>198,01</td>
</tr>
<tr>
<td>10</td>
<td>P3</td>
<td>1.340,92</td>
<td>41,81</td>
<td>207,00</td>
</tr>
<tr>
<td>11</td>
<td>P31</td>
<td>1.338,77</td>
<td>41,86</td>
<td>207,26</td>
</tr>
<tr>
<td>12</td>
<td>P35</td>
<td>1.455,02</td>
<td>38,93</td>
<td>192,76</td>
</tr>
<tr>
<td>13</td>
<td>P41</td>
<td>1.206,99</td>
<td>45,38</td>
<td>223,71</td>
</tr>
<tr>
<td>14</td>
<td>P5</td>
<td>1.324,13</td>
<td>42,23</td>
<td>209,09</td>
</tr>
<tr>
<td>15</td>
<td>P9</td>
<td>1.486,71</td>
<td>38,14</td>
<td>188,81</td>
</tr>
</tbody>
</table>

Rata-rata: 1,492,56

40,26

199,39

Keterangan: MgSO₄ = Mg x 4,951

Korelasi antara penambahan pupuk Mg dan hasil penelitian adalah baik. Berdasarkan hasil penelitian sebelumnya (Yuwono & Handayani, 1999), yang menyatakan bahwa kecenderungan pH tanah < 5,5 karenanya ada korelasi antara penurunan pH dengan penambahan pupuk Mg. Pemberian pupuk Mg dihargai baik di beberapa selubung, khususnya di area yang perlu pemupukan (PMLT) yang bersama-sama dengan daerah lain yang dibutuhkan tanaman tersebut. Beberapa keuntungan yang diperoleh dengan pemberian PMLT adalah: (1) semua hara dapat digunakan dengan hara lain yang diambil, (2) waktu dan tenaga yang dibutuhkan lebih hemat, (3) hara yang diberikan dalam keseimbangan dengan hara lain yang disebutkan, dan (4) pemberian hara renik (mikro) lebih hemat dan mudah.
PENGHARGAAN
Penelitian ini berlaksa berkat bantuan dana dari Yayasan Pemberi Fakultas Pertanian UGM.

PUSTAKA

