Alat

Untuk pengeringan zoolit yang telah dicuci digunakan oven, dan untuk kalsinasi digunakan muffle furnace. Ermeltewey 250 ml dan shaker (penggoyang) digunakan dalam proses penjermane \(\text{NH}_4^+ \) dengan zeolit. Fungsi penggoyang adalah sebagai pengaduk.

Jilid Penelitian

a. Perlakuan Fisik

Perlakuan fisik terhadap ZAL dilakukan dengan langsung-langsung sebagaimana berikut. ZAL dicuci dengan air suling untuk menghilangkan kotoran yang dapat larut dalam air. Zeolit yang sudah bersih lalu dipanaskan dalam oven pada suhu \(120^\circ C \) selama 30 menit. Zeolit ini kemudian dikalsinasi dalam muffle furnace pada suhu 120, 300, 550, dan 700°C masing-masing selama 1 jam. Zeolit yang sudah siap, kemudian digunakan untuk penjermanan \(\text{NH}_4^+ \) dalam larutan \(\text{NH}_4\text{Cl} \) dengan konsentrasi asam 1 g/L. Penjermanan dilakukan selama 24 jam untuk masing-masing suhu kalsinasi. Selama proses penjermanan dilakukan pengadukan dengan penggoyang. Perbandingan berat padatan dan volume larutan pada proses penjermanan adalah 1 g zeolit berbanding 10 ml larutan. Setelah waktu penjermanan mencapai 24 jam, kemudian padatan \(\text{NH}_4\text{Cl} \) dipisahkan dari larutan dengan jalan disingkat. Larutan yang dipisahkan lalu dinisilit kadar \(\text{NH}_4^+ \) nya menggunakan UVVISIBEL Spectrophotometer pada panjang gelombang 400 nm. Proses analisis ini memerlukan pengenceran dan penambahan reaksi Nessler.

b. Perlakuan Kimiawi

Perlakuan kimia terhadap ZAL dilakukan masing-masing dengan menambahkan larutan NaOH dan larutan \(\text{H}_2\text{SO}_4 \) yang konsentrasiya variabel. Sebelum dilakukan perlakuan kimia, ZAL dicuci dengan air suling kemudian dipanaskan dalam oven pada suhu \(120^\circ C \) selama 30 menit (sepeti proses sebelum kalsinasi). Setelah itu, ZAL diaktifkan dicuci dengan larutan NaOH atau \(\text{H}_2\text{SO}_4 \). masing-masing pada konsentrasi 4 g/L, 40 g/L dan 200 g/L selama 3 jam. Selanjutnya dilakukan pemisahan zoolit dari larutan pengaktif dengan penyaringan. Zeolit aktif ini dicuci dengan air suling sampai neutral (pH air cucian mendekati pH air suling). Zeolit yang telah setelah bersih dari larutan pegangkut kemudian dipanasan dalam oven pada suhu \(120^\circ C \) selama 3 jam. Zeolit aktif ini selanjutnya ditambah kapasitasnya terhadap \(\text{NH}_4^+ \) dengan cara yang sama seperti pada zeolit yang telah dikalsinasi perlakuan fisik.

HASIL DAN PEMBAHASAN

Pengaruh Suhu Kalsinasi

Untuk mencari suhu terbaik pada perlakuan dengan kalsinasi, maka kalsinasi dilakukan pada suhu-suhu 120, 300, 550, dan 700°C. Hasil penjermanan \(\text{NH}_4^+ \) dengan ZAL yang telah dikalsinasi pada suhu-suhu tersebut di atas ditunjukkan pada daftar 1 dan gambar 1.

Daftar 1. Kapasitas jerdap \(\text{NH}_4^+ \) ZAL yang telah dikalsinasi

<table>
<thead>
<tr>
<th>No.</th>
<th>Suhu Kalsinasi [°C]</th>
<th>Kapasitas Jerap (\text{mg} \text{NH}_4^+/g \text{zeolit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>1,598</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>1,992</td>
</tr>
<tr>
<td>3</td>
<td>550</td>
<td>1,654</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>1,287</td>
</tr>
</tbody>
</table>

Gambar 1. Pengaruh suhu kalsinasi terhadap kapasitas jerap.

Dari daftar 1 dan gambar 1 dapat disimpulkan bahwa kapasitas jerap tertinggi dicapai pada suhu kalsinasi 300°C. Pada suhu kalsinasi rendah, belum semua zat volatil pengotor dapat tereliminasi, sehingga masih menumpuk pori-pori zeolit. Akibatnya kapasitas jerapnya masih relatif rendah. Pada suhu kalsinasi yang tinggi, struktur kristal zeolit mengalami krusukan dan zeolit menjadi rapuh. Kondisi ini mengurangi kemampuan zeolit untuk menyerap ion-ion yang berada di larutan, dengan demikian kapasitas jerapnya menurun untuk kalsinasi pada suhu tinggi.

Pengaruh Jenuh dan Konsentrasi Larutan Pencuci

Larutan pencuci yang digunakan adalah larutan NaOH dan larutan \(\text{H}_2\text{SO}_4 \) yang masing-masing konsentrasiya variabel, Hasil percobaan ditunjukkan pada daftar II di atas usahah.
Daftar II dan gambar 2 menunjukkan bahwa pencucian dengan larutan NaOH memberi kapasitas jerap yang lebih tinggi dibandingkan dengan pencucian menggunakan larutan H_2SO_4. Hal ini karena pencucian dengan larutan H_2SO_4 disamping melarutkan zat pengotor non kristal ini juga diikuti dengan pelarutan/kerusakan kristalinya.

Daftar II. Kapasitas jerap ZAL dengan perlakuan kimiai terhadap NH_3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Konsentrasi Larutan [g/L]</th>
<th>Kapasitas Jerap [mg NH_3/g zeolit]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NaOH</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1,5900</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>2,0733</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>2,1170</td>
</tr>
</tbody>
</table>

Gambar 2. Pengaruh jenis dan konsentrasi pencuci terhadap kapasitas jerap.

Pencucian dengan larutan NaOH juga dapat menyebabkan kerusakan kristal zeolit, namun prosentase kerusakannya lebih kecil dari kerusakan yang disebabkan oleh pencucian dengan larutan H_2SO_4. Herawati dkk (1997) telah membuktikan bahwa struktur klinoptilolit lebih tahan terhadap perlakuan dengan basa dari pada perlakuan dengan asam. Gambar 3 menunjukkan hasil perhitungan jumlah struktur relatif dari ZAL asli dan ZAL yang telah dikenakan perlakuan kimiai dengan basis 100 g ZAL (Herawati dkk, 1997). Dalam perhitungan ini dianggap bahwa kandungan struktur ZAL tanpa perlakuan kimiai adalah 100%. Perlakuan kimiai masing-masing dilakukan dengan larutan 0.5 N NaOH, 0.2 N H_2SO_4, dan 1.5 N HF. Dari gambar 3 tampak bahwa dengan asam, kerusakan struktur klinoptilolit akibat perlakuan kimiai adalah NaOH terbesar, HF 14.16%, dan H_2SO_4 sebesar 33,4% terhadap struktur ZAL mula-mula (Herawati dkk, 1997).

Gambar 3. Pengaruh jenis perlakuan kimiai terhadap komposisi tipe struktur relatif ZAL.

Herawati dkk (1997) juga telah membuktikan bahwa perlakuan kimiai terhadap ZAL mengakibatkan terjadinya penurunan kandungan ion-ion logam alkali dan alcali ungu dalam ZAL, seperti ditunjukkan pada gambar 4. Perlakuan dengan asam (H_2SO_4 dan HF) berakibat terjadinya kehilangan ion-ion logam yang lebih banyak bila dibandingkan dengan perlakuan kimiai dengan basa (NaOH). Hilangnya ion-ion logam tersebut karena terjadi pertukaran ion dan/atau pelarutan atau penggusuran zat-zat non kristal ini luar kerangka zeolit, maupun pada kristal zeolit selama proses perlakuan kimiai. Akibat perlakuan dengan HF, ion-ion logam ZAL hilang sekitar 75% dari kandungan ion-ion semula. Jika ion-ion yang hilang tersebut adalah ion-ion logam yang dapat dipertukarkan di dalam kerangka zeolit, maka akibat perlakuan ini, ZAL kehilangan daya jerap kimiai sebesar 75%. Untuk keperluan penjerapan amonia dan turunananya dengan prinsip pertukaran ion, keberadaan ion-ion logam yang dapat dipertukarkan perlu dipertahankan ada. Jadi perlakuan dengan NaOH adalah yang terbaik.

KESIMPULAN

Dari hasil penelitian ini dapat ditarik kesimpulan sebagai berikut.

1. Kapasitas jerap tertinggi untuk ZAL yang dikalsinasi adalah 1,9922 mg NH₄⁺/g zeolit, dicapai pada suhu kalsinasi 300°C. Kapasitas jerap zeolit menurun dengan naiknya suhu kalsinasi di atas 300°C.

2. Pencucian ZAL dengan larutan NaOH menghasilkan kapasitas jerap yang lebih besar dibandingkan dengan pencucian menggunakan larutan H₂SO₄.

4. Pencucian dengan larutan NaOH memberikan kapasitas jerap terbaik dari ketiganya perlakuan yang dilakukan pada penelitian ini.

UCAPAN TERIMA KASIH

Penelitian ini merupakan bagian dari penelitian RUT V dengan judul "Pemanfaatan Zeolit Alam Indonesia sebagai Adsorben Amonia dan Turunannya dalam Limbah Cair" dengan peneliti utama Dr. Ir. Roekmijati WS, M.Si, Fakultas Teknik, Universitas Indonesia.

DAFTAR PUSTAKA

