DETEKSI INFEKSI WHITE SPOT SYNDROME VIRUS PADA UDANG PUTIH (Penaeus vannamei) DI PULAU JAWA DENGAN METODE POLYMERASE CHAIN REACTION

POLYMERASE CHAIN REACTION METHOD FOR DETECTION OF WHITE SPOT SYNDROME VIRUS INFECTION IN WHITE SHRIMP (Penaeus vannamei) IN JAVA ISLAND

Amy Azizah A.C.1 dan Kurniasih2,3

Abstract

The aim of this research was to detect and identify white spot syndrome virus (WSSV) infection in white shrimp (Penaeus vannamei) in Java island by one and double steps poly-merase chain reaction (PCR) method, and histopathological examination. Sample of local and imported shrimp were collected from Situbondo (Asem Bagus, Arjas, Pecaron, Besuki, Bungatan), Banyuwangi, Kendal (Kaliwungu), Banten, Yogyakarta, Sukabumi, Indramayu and Hawaii. The age of shrimp was 33 days, 35 days, 50 days, 60 days, 82 days, 85 days, 105 days and 180 days. Antenna, pleopod, gills and carapace were examined for histopathological changes. DNA samples were extracted by PROMEGA method and amplified by one and double steps of PCR. The amplification result indicated that positive bands were found in samples collected from two locations of Besuki area and imported broodstock shrimp from Hawaii. The infected shrimps were detected at 35, 50 and 180 days of ages. Histopathological observation showed hypertrophied nuclei basophilic inclusion bodies on gills and pleopod of white shrimp from Besuki 1, on gills, from Besuki 2 and on pleopod, gills, hepatopancreas tissue of imported broodstock shrimp sample from Hawaii.

Key words: PCR, Penaeus vannamei, white spot syndrome virus (WSSV)

Pengantar

Target serangan WSSV adalah jaringan ekto dan mesodermal asal, seperti in-sang, organ limfoid dan epitel kutikula. Replikasi terjadi pada nukleus dimana virion terbentuk dan menyebab dari sel yang terinfeksi ke sel lain dan dari sel yang luruh (Vlak et al., 2002).

Udang yang terinfeksi menunjukkan gejala bintik-bintik pada karapas yang berasal dari penumpukan garam-garam kalsium abnormal. Udang yang terinfeksi menunjukkan warna merah jambu sampai merah kecoklatan selama ekspansi dari lapisan kromofor kutikula udang, anoreksia, berenang lambat di dekat permukaan kolam dan akhirnya tenggelam di dasar dan mati. Tingkat kematian sangat tinggi (100%) terjadi dalam 3 sampai 10 hari setelah tanda penyakit yang pertama muncul (Gabriel dan Felipe, 2000; Jory, 1999). Infeksi WSSV juga menunjukkan perubahan warna menjadi lebih gelap dan munculnya bintik-bintik kecil berwarna kecoklatan pada bagian tubuh udang (Koesharyani et al., 2001).

Perubahan patologi yang menciri dari WSSV pada udang penaelid adalah hypertrophied nuclei, chromatin margination dan eosinophilic (pada stadia awal ber-
bentuk seperti Cowdry A) sampai intranuclear basophilic inclusion (dengan pengecatan rutin haematoxylin dan eosin). Nekrosis multifokal terjadi pada sebagian besar jaringan asli ektodermal, mesodermal, insang, hematosit dan jaringan haematopoietik, organ limfoid, jaringan penghubung, epidermis subkutikular, perut, epitel, usus depan, tengah dan belakang, jantung, otot lurik, dan dinding ovarium, kelenjar antena dan jaringan saraf (Anonim, 1994; Wongteerasupaya et al., 1995). Infeksi awal terlihat inklusi tipe Cowdry A yang ditunjukkan dengan nukleus bagian tengah berwarna merah gelap (acidophilic) dikakkelli oleh bagian terang dan cincin chromatin biru (basophilic) (Flegel, 2000).

Polymerase Chain Reaction (PCR) dan primernya dapat menunjukkan bahwa agen penyebab white spot syndrome pada jenis udang yang berbeda sangat dekat hubungan antara satu dengan lainnya, sehingga dapat digunakan sebagai alat yang efektif untuk diagnosis dini terhadap infeksi WSSV pada udang dan sangat penting dalam mencegah penyebaran lebih lanjut dari penyakit ini (Wang et al., 1995).

Bahan dan Metode

Penelitian dilakukan di laboratorium Balai Karantina Ikan Soekarno Hatta. Udang yang menunjukkan gejala klinis diambil keseluruhan bagian (benih), haemolymph, insang atau pleopod (Anonim, 2000). Udang dibagi 2 bagian, tiap organ pada bagian pertama dipotong setebal 3 mm, dimasukkan formalin 10% untuk pemeriksaan histologi. Tiap organ bagian ke-dua dipotong 0,5 cm dimasukkan kedalam alkohol 70%, dan disimpan pada suhu 4°C (Anonim, 2002).

Metode PROMEGA digunakan untuk isolasi DNA virus. Sampel diekstraksi dengan nenambah proteinase K, Rnase dan protein precipitation, dicuci dengan isopropanol dan alkohol 70% kemudian dilarutkan dalam 100 μl DNA rehydration dan diinkubasikan pada suhu 65°C selama 1 jam, dan disimpan pada suhu 2-8°C (Anonim, 2002).

Amplifikasi DNA menggunakan primer ShrimP CaRe™ Simplex Primer Kit untuk WSSV dengan siklus sebagai berikut; mulai 94°C selama 4 menit, 55°C selama 1 menit dan 72°C selama 2 menit, diikuti 39 siklus dari 94°C selama 1 menit, 55°C selama 1 menit dan 72°C selama 2 menit dan tambahan 5 menit pada 72°C yang terakhir. WSSV amplikon spesifik dari reaksi ini adalah 401 bp (Anonim, 2003 a).

Elektrophoresis dilakukan dengan kekuatan listrik 100 V, 400 A selama 45 menit, diamati dengan UV trans illuminator (Anonim, 2002).

Spesimen (pleopod, kepala udang dan jaringan peritonium di bawah karapas udang) difokuskan menggunakan larutan formalin 10%. Untuk dilakukan proses histologi dengan pengecatan hematoksidin dan eosin(Anonim, 1957).

Hasil dan Pembahasan

Konsentrasi DNA terendah yang didapat sebesar 291,25 ng/μl dan tertinggi 485,75 ng/μl, kemurnian DNA terendah 1,758 dan tertinggi 1,890. Dalam kisaran murni menurut Nicholl (1994) bahwa perban-
ting rasio A260/A280 untuk DNA adalah 1,8.

Hasil pengamatan gejala klinis menunjukkan sulit tumbuh (sampel udang dari Indramayu, Yogyakarta, Banten 1 dan 2), anoreksia (sampel udang dari Asem Bagus, Arjasa), udang lemah (sampel udang dari Asem Bagus, Arjasa, Besuki 1 dan 2, Indramayu, Yogyakarta, Banten 1 dan 2, Kaliwungu 1 dan 2, Hawai 1, 2 dan 3), luka (sampel udang dari Pecaron), bintik putih pada kutikula (sampel udang dari Arjasa), kutikula berwarna kemerahan (sampel dari Banyuwangi) dan warna kecoklatan pada pangkal uropod dan pleopod (sampel udang dari Bungatan).

Isolasi DNA menggunakan metode Promega, kemunculan band dibandingkan dengan kontrol IQ2000™ WSSV detection and prevention system (Gambar 1) dan Shrimp CaRe™ Simplex Primer Kit untuk WSSV (Gambar 2).

Gambar 1. Standar hasil untuk double step PCR; 1, sampel dengan infeksi WSSV berat; 2, sampel dengan infeksi WSSV sedang; 3, sampel dengan infeksi WSSV lemah; 4, sampel dengan infeksi WSSV sangat lemah; 5, kontrol negatif; 6, ddH2O; 7, standar 1 (2000 kopi/reaksi); 8, standar 2 (200 kopi/reaksi); 9, standar 3 (20 kopi/reaksi); M, penanda berat molekul, 848 bp, 630 bp, 333 bp (Anonim, 2003b)

Gambar 2. Standar hasil untuk one step PCR; 1, H2O; 2, kontrol internal udang SPF pada 603 bp; 3, plasmid kontrol WSSV; 4, plasmid kontrol WSSV/IHHN; 5-8, kontrol-kontrol plasmid IHHN, MBV, NHV, BP; 9-11, kontrol positif WSSV pada 401 bp; 12, kontrol positif IHHN; 13, kontrol positif BP; 14, kontrol positif MBV; 15-16, kontrol positif WSSV pada 401 bp (Anonim, 2003a)

Gambar 3. Hasil uji PCR pada sampel udang putih 35 hari asal Besuki 1. Marker (M) terdiri dari 3 band pada posisi 848, 630 dan 333 bp; kontrol positif (P) muncul tiga band yaitu pada 900, 550 dan 296 bp; sampel 1,2,3,4,5 menunjukkan 2 band yaitu pada 848 dan 296 bp (positif WSSV sangat lemah).

Gambar 4. Hasil uji PCR pada sampel udang putih umur 55 hari asal Besuki 2. Marker (M) terdiri dari 3 band pada 848, 630 dan 333 bp; kontrol positif (P) muncul tiga band pada 900, 550 dan 296 bp; sampel 1,2,3,4,5 masing-masing muncul 2 band pada 848 dan 296 bp (positif WSSV sangat lemah).
Pengujian dengan one step PCR diperoleh hasil negatif WSSV pada seluruh udang dari 13 lokasi, sedangkan menggunakan double step nested PCR yang di diperoleh hasil positif lemah dan sangat lemah, pada sampel Besuki 1 (Gambar 3), Besuki 2 (Gambar 4) dan pada ketiga sampel induk asal Hawaii (Gambar 5).

Gambar 5. Hasil uji PCR pada sampel induk udang putih SPF umur 160 hari asal Hawaii. Marker (M) terdiri dari 3 band pada 848, 630 dan 333 bp; kontrol positif (P) pada 900, 550 dan 296 bp; sampel 1 muncul 1 band pada 296 bp (positif WSSV lemah); sampel 2 dan 3 muncul 2 band pada 848 dan 296 bp (positif WSSV sangat lemah).

Hasil PCR menunjukkan perbedaan yang jelas antara dua metode amplifikasi yang digunakan yaitu antara two step sequential (double step nested PCR) produk IQ2000 dan one step PCR yang dikembangkan oleh ShrimP CaRe™ Simplex Primer Kit untuk WSSV. One step PCR konvensional menurut Khadijah et al., (2003) menggunakan struktur gen VP15, VP26 dan VP24 sedangkan pada udang SPF ekspresi gen yang paling tinggi adalah pada ORFs 151, 427 dan 366 sehingga transkripsi yang terjadi tidak terdeteksi kit biasa karena berada dibawah batas deteksi.

Perbedaan hasil penelitian tersebut dapat disebabkan oleh faktor primer yang digunakan, seperti Park et al. (1998) yang mendapatkan amplikon positif pada uji dengan menggunakan primer yang dikembangkan untuk rod shape nuclear virus of P. japonicus (RV-PJ) sedangkan dengan menggunakan primer dari Lo et al. (1996) pada sampel yang sama diperoleh hasil negatif. Hal ini menunjukkan virus Korea tidak mirip dengan virus WSSV yang ditemukan di Taiwan, tetapi lebih mirip RV-PJ dari Jepang karena pada hasil sequence virus Korea dan Jepang identik.

Udang yang memiliki gejala klinis dan patologi positif WSSV tetapi negatif pada hasil PCR, mungkin disebabkan oleh primer yang tidak identik tetapi dapat juga disebabkan oleh alat PCR yang kurang sensitif. Khadijah et al., (2003) meneliti udang SPF (Specific Pathogen Free) komersial, dengan menggunakan uji diagnóstik komersial yaitu single step nested PCR dan one step PCR konvensional menunjukkan hasil negatif terhadap WSSV. Namun dengan menggunakan WSSV-specific DNA microarray yang dikonfirmasikan lagi dengan real time PCR dan two step PCR (dengan penambahan jumlah siklus amplifikasi) ditemukan hasil positif pada sampel yang sama.

Hasil negatif yang diperoleh dapat pula karena udang yang diperiksa memang tidak terinfeksi oleh WSSV, tetapi terinfeksi oleh penyakit lainnya yang memiliki gejala klinis mirip dengan WSSV. Perubahan warna udang menjadi merah menurut Lightner (1988) bukan merupakan tanda pasti bahwa udang terserang WSSV karena hal yang sama dapat disebabkan oleh infeksi bakteri atau toksin mikrobial. Infeksi bakteri menyebabkan nekrosis hebat pada jaringan hepatopankreas dan peradangan yang mirip dengan aflatoksin. Bintik putih pada kutikula udang juga bukan merupakan metode yang dapat diandalkan untuk diagnosa...
awal WSSV karena bintik yang sama dihasilkan oleh berbagai kondisi lingkungan seperti alkalinitas tinggi (Jory, 1999).

Pemeriksaan histopatologi menunjukkan insang dan pleopod udang putih umur 35 hari asal Besuki 1 dan insang udang putih umur 50 hari asal Besuki 2 menunjukkan badan inklusi intranuklear fase awal. Badan inklusi yang menonjol pada bagian ini adalah inklusi tipe Cowdry A yang ditunjukkan dengan nukleus bagian tengah berwarna merah gelap (acidophilic) dikelilingi oleh bagian terang dan

Gambar 6. Inklusi tipe Cowdry A yang ditunjukkan dengan nukleus bagian tengah berwarna merah gelap (acidophilic) dikelilingi oleh bagian terang dan cincin chromatin biru (basophilic)(panah 1) dan perkembangan lanjut dimana kromatin telah terpinggir (panah 2) dan inti kosong (A,B,C,D). Badan inklusi yang sempurna yaitu intranuclear basophilic inclusion (E,F)(panah 3) H&E, P1000X.
Cincin kromatin biru (*basophilic*). Terdapat pula potongan badan inklusi intranuklear klasik dari infeksi WSSV pada berbagai fase perkembangan awal. Terdapat fase dimana inti memisah dari membran inti, berwarna eosinofilik dan perkembangan penuh dimana kromatin telah terpinggirkan (Gambar 6A, 6B, 6C dan 6D).

Hepatopankreas, insang dan pleopod induk udang SPF asal Hawai terinfeksi WSSV dengan badan inklusi intranuklear telah berkembang sempurna, berwarna lebih basofilik, ada tekstur granular dan hampir memenuhi inti yang membesar (Gambar 6E dan 6F).

Tidak ditemukan lesi dan nekrosis pada berbagai preparat organ udang putih asal Besuki 1, Besuki 2 ataupun induk udang putih asal Hawaii, mungkin disebabkan oleh tingkat serangan WSSV yang sangat lemah, sehingga udang hanya bersifat karier dan belum sampai mengalami kerusakan ataupun kematian jaringan.

Perubahan patologi menciri dari WSSV pada udang penaeid adalah terjadinya hipertrofi nukleus, chromatin margination dan eosinophilic (pada stadia awal berbentuk seperti Cowdry A) sampai inklusi intranukleus basofilik dan nekrosis multifokal pada sebagian besar jaringan asli ektodermal, mesodermal, insang, hemosit dan jaringan haemotopoietik, organ limfoid, jaringan penghubung, subkutikular epidermis, perut, epitel foregut dan hindgut, jantung, otot lurik, midgut dan dinding ovarium, kelenjar antena dan jaringan saraf (Anonim, 1994; Wongteerasupaya *et al.*, 1985, Fiegel, 2000).

Perubahan histopatologi yang dikomparsikan dengan hasil positif pada uji PCR menunjukkan induk udang putih SPF asal Hawaii, udang putih umur 55 dan 35 hari asal Besuki menunjukkan gejala patologis menciri dari serangan WSSV.

Kesimpulan

Hasil pengamatan gejala klinis menunjukkan sulit tumbuh (sampel udang dari Indramayu, Yogyakarta, Banten 1 dan 2), anoreksia (sampel udang dari Asem Bagus, Arjasa), udang lemah (sampel udang dari Asem Bagus, Arjasa, Besuki 1 dan 2, Indramayu, Yogyakarta, Banten 1 dan 2, Kaliwungu 1 dan 2, Hawai 1, 2 dan 3), luka (sampel udang dari Pecaran), bintik putih pada kutikula (sampel udang dari Arjasa), kutikula berwarna kemerah (sampel dari Banyuwangi) dan warna kecoklatan pada pangkal uropod dan pleopod (sampel udang dari Bungatan).

Sampel berasal dari Besuki 1 dan Besuki 2 serta udang impor SPF asal Hawaii positif terinfeksi WSSV pada pemeriksaan *double nested* PCR. Inklusi tipe Cowdry A yang ditunjukkan dengan nukleus bagian tengah berwarna merah gelap (*acidophilic*) dikelilingi oleh bagian terang dan cincin kromatin biru (*basophilic*) hingga badan inklusi yang sempurna terlihat pada hepatopankreas, insang dan pleopod dari udang yang menunjukkan hasil PCR positif.

Daftar Pustaka

Anonim. 2003a. *One step simplex primer kit for the detection of genomic DNA from white spot syndrome.
virus (WSSV) in shrimp, Diagnostics Inc., Connecticut. 2 p.

Anonim. 2003b. IQ2000™ WSSV detection and prevention system, detection kit for Baculovirus associated with white spot syndrome virus (WSSV) in Penaeid shrimps, Farming Intelligent Inc., Taiwan.

