EVALUATION OF GOLA RIVER ANNUAL DISCHARGE
An Experience of Spring Fed Siwalik Mountain River

R.K. Pandit

ABSTRACT

The stream character as such and its discharge behavior are the gross results of a range of events and functions of nature. The word 'stream flow', as used in the present text, is referred to 'catchment yield'. This yield is obviously discharge, q, which has dimensions of volume, L\(^3\)T\(^{-1}\), and time, T, expressed here onwards in curnec (one cubic metre per second) which will ultimately be converted into a single volumetric unit like (L\(^3\)) and hence referred to as Q. As the Gola River is a spring fed river, its discharge behaviour is absolutely dependent on the sub-surface flow of Siwalik Ranges. It has been noticed that the sub-surface flow fluctuates according to the monsoon and non-monsoon precipitation impacts. Hence, an interesting seasonal rhythm is noticed in the monsoonal and non-monsoonal discharge with the changing values of stream magnitude and velocity.

INTRODUCTION

The entire watershed of the Gola River (GR) system in the upland lies in the Siwalik hills of U.P. Himalaya and stretches over about 578.35 sq km between the coordinates of 29\(^\circ\)12’ to 29\(^\circ\)28’ N by 79\(^\circ\)24’ to 79\(^\circ\)49’ E. The natural vegetation of the region is classified as temperate, though geology and soils rather than elevation and climate make it a complex whole. The forest cover in the basin is 64.64 percent, Banok 14.71 percent, Sal 5.76 percent and miscellaneous

* Dr. R.K. Pandit is Lecturer in Geography, at the Department of Geography, Kumaun University, Naini, Almora 263601, U.P., India.
species 14.89 percent. The central part of the basin is largely under the pine, while the northern and westernmost portions have Quercus incana. Agriculture is restricted to the valleys, where some patches of settlement may be observed in a scattered form away from the valley concentrations.

The climatic conditions are characterized by fog, dew, snow and frost during the retreating monsoon and cold seasons. The lower Gola Valley is very warm during the hot season when high temperatures are experienced up to the height of some 1500 m above sea level. Governed by the monsoonal rhythm, rainfall in the Gola Basin varies from an annual total of about 2500 mm in the north-west to almost half of it in the north-east and south-west.

OBJECTIVE OF THE STUDY

The ridges which define its extents stand as water-parting in all directions and its reference point (Pb) has been decided to be near Ramnaghe whereas the mainstream (K) enters the plains via Kathgodam. The importance of the Gola discharge (Q) or its volume (Q) lies in its being the only exploitable source of water for paddy and therefore dry Bhang tract of Nanital District and the study as such has its importance multiplied by the execution of the 'Jamrani Dam Project'. Such evaluation as this is also important because the Gola Basin (GB) presents a typical and unique case of rotundity of drainage basin, that is, the basin shape (Sh) is nearly unity. It is explained below:

\[ Sh = \frac{Lb \times Wb}{2 \cdot d - 1} \]

\[ 26 \cdot 41045 \cdot 27.13620 = 1.0838 \]

Where:
- \( Lb \) = actual length of the basin, km;
- \( Wb \) = average width of the basin, km;
- \( d \) = diameter of the circle with the same area as the basin, km;
- \( Sh \) = shape of the basin, dimensionless.

The objective of this paper is to obtain such \( q' \) value (discharge) of the basin at the reference point (Pb) whose reliability may be acceptable to the authorities so that it may be taken as dependable for the future planning or which should not deviate much from the arithmetic mean of the \( q' \) measured for a considerable span of time. Of course, the discharge value (Q) of the basin at the Pb can be measured mathematically, but presently it is to be achieved empirically or rather so that the methodology may be useful for those such basins as may be considered otherwise inaccessible, difficult or impossible for gauging works.
In the absence of long term data, it is necessary to choose some workable figures and then to work out results from classical empirical formulae, from amongst such works as carried out by Strange, Barlow, Rhoads and Linn (Sally, 1968). Rhoads's formula \( R_a = R_m - k T_a \) was selected to obtain the weighted average runoff, as it is based on the conception that losses from rainfall depend basically on mean atmospheric temperature for the period under consideration. This conception might be applied to the area without bothering for the geometry of the stream network. Substituting values of weighted average of precipitation \( (P_a = 62.47 \text{ inches}) \), weighted average of atmospheric temperature \( (T_a = 67.87^\circ \text{F}) \) and of a constant \( k = 0.59 \) generally vary from 0.43 to 0.57 only (Salt- ty, 1968), and weighted average runoff has been estimated \( (R_a = 724.85 \text{ mm}) \). The calculated \( R_a \) value, however, does not seem to display a satisfactory show in that it speaks of that fraction of precipitation that might runoff but not of the actual value of discharge, \( q \), which increases because of the imported water through channels.

Therefore, to justify the available value of discharge for the study basin, Justin's equation was selected \( (C = 0.934 S^{0.153} R^2/T) \). After substituting the values of average absolute slope of the basin \( (S = 0.698) \), with the annual precipitation (square) and mean annual temperature ratio, annual runoff depth \( (C = 939.27 \text{ mm}) \) has been estimated.

This calculated value of annual runoff depth, however, could not be much satisfying, too, as along as certain factors exist. The equation seems to have failed to consider the values of annual precipitation and mean annual temperature to be substituted by those of the average of the annual precipitation and mean annual temperature for the Kurniawan Subbasin. Otherwise, the quotient of \( R^2/T \) would have increased following the fact that the actual annual precipitation value and actual mean annual temperature value for the Gola Basin should be relatively high and low respectively, and would have thus given a plus value to be added to the present annual runoff depth. Whereas, it appears to have already exceeded the actual (expected) discharge value at the confluence of the Gola River and the Ballia Stream by some one or a half times.

This, the precipitated values of weighted average runoff and annual runoff depth forced to explore other some suitable equation. One popular and yet simple equation was \( q = a \times v \) (Linsley et al., 1979), where \( a = \text{cross sectional area} \), \( v = \text{mean velocity} \) and \( q = \text{rate of discharge} \). This, of
course, requires the determination of cross-sectional area and mean velocity values at the confluence point (Figure 1). These were accomplished by calculation based on certain measurements of hydraulic mean depth, $T$, of the very first stream order magnitude, $M$, and then applying it to the highest magnitude, $M_{\text{con}}$, at the confluence point where the ultimate rate of discharge was to be estimated.

Measurements of the hydraulic radius, $r$, of the exactly twenty first order magnitude streams existing at the Kalsa's (a tributary of Gola River) segments on both the right and left side slopes around Mahwa Tal, were taken. During the field work by the investigator, 10 times a week from September 1984 to August 1985. In fact, each measurement of the hydraulic radius was the mean of three readings. The mean hydraulic depth of these first stream order magnitude, $M_{1}$, was 0.034 m which, henceforth, may also be designated as initial hydraulic radius. The total area of the basin is 525.291 sq.km. The highest stream order stream the first order magnitude is based on the simple fact that each successive inter-first order magnitude is based on the simple fact that each successive inter-bifurcation length gathers water from 4x sides just as the first order streams do. Hence, each inter-bifurcation length is the product of the total magnitude values supplied by its lower order streams plus one of its own. Therefore, the value of $r$ of the Gola River at confluence point should be $3.3298954 m \cdot r = \sqrt{M_{1} \cdot L}$. This derivation may need some explanation. It is very simple geometrical
fact, much utilized in hydraulics, that the hydraulic radius, \( r \), value of a high-order channel, which has been supplied with water from its lower order channels, increases at the rate determined by the product of the square root of the \( r \) order value multiplied by the initial \( r \) value.

For obtaining velocity value, the equation evolved by Hazen-William (Fair, et al., 1974) was used:

\[
v = 1.318 \cdot C \cdot 0.63 \cdot 0.54
\]

\[
= 1.318 \cdot 4.69 \cdot 10.924793 \cdot 0.03 \cdot 0.54
\]

\[
= 6.716 \text{ fps} \cdot 0.3048
\]

\[
= 2.047 \text{ mps}
\]

where:

\( C \) = a coefficient depending on the type and condition of the conduit, dimensionless;

\( r \) = hydraulic radius, ft;

\( s \) = slope of the hydraulic gradient, ft/ft, and

\( v \) = velocity of the flow, mps.

Hazen-Williams formula actually works appreciably for pressure conduits, hence the value of \( r_0 \) as calculated above, is the result of the transformation for pressure conduit, which has been accomplished by multiplying the product of \( r_0 \) (2.354607) by the square root of 2. This may be obtained by multiplying the double value of the initial \( r \) by the square root of the \( N_x \), and the product thus obtained being divided by the square root of 2, i.e., 3.3957 m.

Now, the cross-sectional area value \( A_0 \) = \( \pi r_0^2 / 2 \) of the main stream at the confluence point can be obtained easily by first following the simple geometrical relation which will be 17.105971 m. Hence, the Gola River will discharge at the confluence point, at the rate of 95.016 cum.

To assess the seasonal rhythm in the discharge volume, attempts have been made. Taking the period of monsoon as effective days, as three months of 90 days each, the discharge volume during monsoon is estimated to be 277.238. 10^6 cum. Similarly, for non-monsoon period, for which the value of \( q_i \) as per the following the same procedure as for monsoon, will be 71.28. 10^6 cum.

As such, since the total discharge volume of the Gola River, at the confluence point, is the sum of the monsoonal and non-monsoonal discharge, which can be conveniently expressed now as;

\[
q_i = q_{i,m} + q_{i,n} = 277.238. 10^6 + 71.28. 10^6
\]

\[
= 348.518. 10^6 \text{ cum}
\]

\[
= 348.518. 10^9 \text{ in}
\]
CONCLUSION

On comparing with reality, i.e., the measured average q (m³/d) value for the Gola for monsoonal (Q₉₀ₑ₉₀) period, the basin's calculated qₑ₉₀ₑ₉₀ (35 curesis) was less by some 3 percent, hence about 97 percent correct. Even this deviation appears following difference of about 2.5 km between the gauge for measuring and the Pr for calculating the q. Such high degree of accuracy in the statistically derived result of the Gola's water discharge provided as high degree of reliability of calculation discharge volume for the non-monsoonal period, too. By what ratio the qₑ₉₀ₑ₉₀ dropped to become qₑ₉₀ₑ₉₀ was known from the ratio of Mₑ₉₀ₑ₉₀ for mon and Mₑ₉₀ₑ₉₀ for non Mₑ₉₀ₑ₉₀ₑ₉₀, hence the ratio of magnitude for mon and non Mₑ₉₀ₑ₉₀ₑ₉₀, as the Mₑ₉₀ₑ₉₀ₑ₉₀ was the product of rₑ₉₀ₑ₉₀ₑ₉₀ and v while both were derived from rₑ₉₀ₑ₉₀ₑ₉₀ and from factors including rₑ₉₀ₑ₉₀ₑ₉₀, respective ly when rₑ₉₀ₑ₉₀ₑ₉₀ was the product of the r of the Mₑ₉₀ₑ₉₀ and Mₑ₉₀ₑ₉₀ₑ₉₀ at the Pr. It was also found that the RMₑ₉₀ₑ₉₀ₑ₉₀ (0.078) was significantly correlated with the ratio of Qₑ₉₀ₑ₉₀ₑ₉₀ to qₑ₉₀ₑ₉₀ₑ₉₀ (0.003).

REFERENCES


