GENESIS KAOLIN
DAN REKAYASA PEMANFAATANNYA SEBAGAI
BAHAN BAKU KERAMIK
(Studi Kasus Pada PT Sugih Alam Anugroho, di
Kecamatan Belinyu, Kabupaten Bangka, Propinsi
Kepulauan Bangka Belitung)

Genesis of Kaolin and Its Benefit for Ceramic Good
(Case Study At PT Sugih Alam Anugroho, Belinyu Sub
District, Bangka District, Bangka-Belitung Province)

Mamad Bakar1, Sukandarunumidi2, Stejono2

Program Studi Teknik Geologi
Program Pascasarjana Universitas Gadjah Mada

ABSTRACT

Kaolin is one of the mining material which is found in
Belinyu area. Nowadays at Belinyu District area there is an
industry owns by PT Sugih Alam Anugroho which produces
kaolin powder. This research was intended to study genesis of
kaolin and its benefits for ceramic good.
The research area is located at Belinyu Sub District, Bangka
District, Bangka-Belitung Province. The activities included field
and laboratory works. The field activities were to take samples,
strike and dip joint, depth and thickness measurements outcrops.
Laboratory activities included physical and chemical properties
analysis, XRD analysis, and ceramic making and testing.
The result showed that genesis of kaolin was weathering
processes for residue kaolin and sedimentation processes for
sedimentary kaolin which spread at stream valley area. The best
result of ceramic product as ceramicware can be made by mixing
of 1 part of kaolin and 3 parts by volume of ball clay.

Key words : Genesis, weathering process, ceramic

1 Jurusan Teknik Geologi, STTNAS Yogyakarta
2 Fakultas Teknik Universitas Gadjah Mada, Yogyakarta
PENGANTAR

Kaolin merupakan salah satu jenis bahan tambang yang dibutuhkan dalam bidang industri, antara lain industri keramik, keram, karat, cat, pestisida, dan obat-obatan, baik sebagai bahan baku utama, bahan pengisi (filler) atau bahan pelapis (coater). Di daerah Kecamatan Belayu, pada saat ini sudah ada industri hulu yang mengolah kaolin, yang diakukan oleh PT Sughal Alam Arungko yang produksinya berupa tepung kaolin. Dengan telah adanya industri hulu, diharapkan muncul industri hulu yang memanfaatkan kaolin di daerah ini sebagai bahan baku keramik.

Kaolin mempunyai komposisi hidroks aluminium silikat (Al₂O₃, 2SiO₂, 2H₂O) dengan beberapa mineral penyerta, seperti titton (TiO₂), besi (Fe₂O₃), kapur (CaO), magnesium (MgO), atau Kalium (K₂O). Menurut Kurniati dan Suhada (dalam Sudah dan Arifin, 1997) ada 2 proses geologi dalam pembentukan kaolin (kaolinsiasi), yaitu proses pelapukan dan proses alterasi hidrotermal. Proses pelapukan terjadi pada batuan bekas yang banyak mengandung feldspar dengan media permukaan, sehingga mengubah feldspar menjadi kaolin. Gerbunan proses pembentukan kaolin dapat dinyatakan dengan persamaan berikut:

$$2KAlSi₃O₈ + 2H₂O \longrightarrow Al₂(OH)₄(SiO₃O₁) + K₂O + 4SiO₂$$

Feldspar

Kaoinit

Tabel 1. Klasifikasi tipe alterasi dan himapan mineralnya

<table>
<thead>
<tr>
<th>Tipe Alterasi</th>
<th>Zony (Himpanpan mineral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silisik</td>
<td>Yuarsa, kaedon, opal, pirith, henatit.</td>
</tr>
<tr>
<td>Adelaria</td>
<td>Oraksia (adelaria), kuarsa, serisit, illit, pirith.</td>
</tr>
<tr>
<td>Serisistik, Argilik</td>
<td>Serisit (muskovit), illit-smektit, montmorilonit, kaolin, kuarsa, kalsit, dolomtit, pirith.</td>
</tr>
<tr>
<td>Argilik lanjat</td>
<td>Kaolin, olinit, kristobalit (opal, kalsedon), natte sulphar, jarosit, pirith.</td>
</tr>
<tr>
<td>Acid Sulphate</td>
<td></td>
</tr>
<tr>
<td>Silika-Karbonat</td>
<td>Kuarsa, kalsit.</td>
</tr>
<tr>
<td>Propilittik, Alterasi</td>
<td>Kalsit, epidot, wairkit, klarit, albitt, illit-smektit, montmoronil, pirith.</td>
</tr>
<tr>
<td>Zeolitik</td>
<td></td>
</tr>
<tr>
<td>Furul terbaik merupakan mineral kunci</td>
<td></td>
</tr>
</tbody>
</table>

Barang keramik merupakan barang yang dibuat dari tanah liat dan proses pembuatannya berlangsung deger-cara pembakaran pada suhu tinggi (Astuti, 1997). Kaozin (tanah liat) sebagai bahan pokok pembuakan keramik sangat menggunaikan karena mudah didapat dari penggunaan produknya sangat luas. Sifat tanah liat yang sangat menguntungkan adalah mudah dibentuk bila dicampur air dalam perbandingan tertentu, sehingga cakup plastis untuk dapat dibentuk, tidak mengalami retak-retak selama proses pembakaran dan

Keramik maju (advance ceramic) belum ada di Indonesia. Bahan yang digunakan adalah bahan antisial murni, terutama yang mempunyai fase kristalin.

Secara umum barang keramik terdiri atas dua bagian utama, yaitu badan (body) yang memberi betuk kaku dan kekakuan dan gelas sebagai penutup pelindung badan, sehingga tampak lebih indah, merakin, mudah dibersihkan dan sangat kuat larut yang menguntnugkan. Gelas dapat diartikan sebagai lapisan tipis bahan-bahan silika pada permukaan produk-produk keramik, yang lebih setelah dibakar (Razki, 1992). Penggelasian bermanfaat untuk membuat produk-produk tak dapat ditembus gas dan cairan, menambah kekuatan produk-produk, dan menambah indahnya produk.

Dalam penelitian ini penulis membentuk pemanasan kaolin sebagai bahan baku keramik halus/grahit halus (stemware) dengan proses pemanasan secara cetak tungau.

CARA PENELITIAN

Pelaksanaan kegiatan penelitian ini, dibagi menjadi 3 tahap yang meliputi tahap persiapan yang meliputi studi pustaka yang ada kaitannya dengan topik penelitian dan teori yang mendahului serta mencari data seunder yang dipertimpangkan, tahap pemilihan lapangan yang mencakup pengamalan sample, pengambilan contoh batuan dan mengukur keabalian dan kedalaman kaolin, dan tahap pengolahan data dan analisis laboratorium, yaitu analisis silat fisik, kimia, XRD dan uji keramik, kompilasi dan evaluasi data antuk mengesu pada proses keramiknya kaolin dan rekesi mawanfattanya sebagai bahan baku keramik.
HASIL DAN PEMBAHASAN

Genesa Kaolin

Hasil pengamatan lapangan dan analisis laboratorium menunjukkan:

1) morfologi tempat dikeometersan kaolin relatif datar

2) penyebaran dan pelampasan kaolin ke arah lateral sangat luas.

3) hasil analisis sifat fisik kaolin pada l.p 2 Blok B, memperlihatkan kaolin ke arah vertikal, dan pada bagian tengah (kedalaman 3 meter) metrik kualitas lebih baik dibandingkan dengan batuan induk (Flamet rock).

4) tidak tampak adanya perlapisan.

5) hasil analisis XRD menunjukkan susunan kaolin adalah mineral kaolinit, kaaters, gibbs, dan zika. Data sekunder hasil analisis PT Sugih Alam Anugroho menunjukkan bahwa kaolin terdiri atas mineral kaolinit, kaaters, maskovit, dan sekali feldspar.

6) dari hasil analisis XRD di atas tidak ditemukan adanya mineral kaolinit untuk tipe-tipe alterasi kurotermal.

Berdasarkan data tersebut di atas, dapat disimpulkan bahwa kaolin di daerah penelitian adalah kaolin residual yang terbentuk akibat proses pelapukan batuan granit. Namun, pada daerah aliran sungai dan rawa dijumpai adanya indikasi perlapisan, penyebabannya setempat-setempat, sehingga disimpulkan pada daerah ini, terdapat kaolin hasil proses sedimentasi (kaolin sedimenter). Berdasarkan kerumpukan di lapangan dan interpretasi peta topografi dan peta geologi dibuat peta tematik penyebaran kaolin seperti diunjukkan pada gambar 1.
Gambar 1. Peta penyebaran kaidah
Rekayasa Pemanfaatannya Sebagai Bahan Baku Keramik

1. Campuran 1 perbandingan kaolin-tanah liat (1 : 0) (diwakili oleh kaolin(K1) contoh K1 dan K1 4), memperlihatkan hasil tidak baik. Setelah selesai proses cetak tuang, benda uji dianginkan/dikeringkan dan pada saat kering tampak agak retak - retak. Selanjutnya, benda uji dibakar pada suhu 900 °C, dalam waktu kurang lebih 4 jam. Hasil pembakaran memperlihatkan benda uji/produkt retak dan pecah.

3. Campuran 3 dengan perbandingan (1:3) diwakili contoh K1 1, K1 2, K1 3 dan K1 4. Hasil uji memperlihatkan hasil yang bagus, pada suhu pembakaran 900 °C (suhu biskuit) dan pembakaran pada suhu 1200 °C (suhu gelasir). Benda uji/produkt tidak retak dan tidak pecah. Berdasarkan hasil uji keramik itu dapat diimplikasikan bahwa kaolin di daerah penelitian dapat digunakan sebagai bahan baku keramik. Untuk memperoleh kualitas keramik yang baik, campuran yang digunakan adalah (1:3), yaitu 1 bagian kaolin berbanding 3 bagian tanah liat (Ball Clay). Perbandingan (1:3), menghasilkan kualitas keramik yang baik dengan proses cetak tuang dengan mengikuti aturan baku proses pembuatan produk keramik.

Hasil uji keramik ditunjukkan pada tabel 2, 3, 4, dan produk hasil uji keramik ditampilkan pada gambar 2, 3, 4.
Tabel 2. Hasil Uji keramik, perbandingan campuran (1:0 dan 1:1), suhu pembakaran 900°

<table>
<thead>
<tr>
<th>No</th>
<th>Contoh</th>
<th>Kaolin (Kg)</th>
<th>Tanah liat (Kg)</th>
<th>Air (L)</th>
<th>Soda silikat (g)</th>
<th>Pemosisitan (%)</th>
<th>Susut (%)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K1 1</td>
<td>1</td>
<td>1</td>
<td>0,55</td>
<td>15</td>
<td>24,86</td>
<td>4,60</td>
<td>Tidak retak</td>
</tr>
<tr>
<td>2</td>
<td>K1 2</td>
<td>1,5</td>
<td>1,5</td>
<td>0,70</td>
<td>5,0</td>
<td>24,78</td>
<td>8,5</td>
<td>Tidak retak</td>
</tr>
<tr>
<td>3</td>
<td>K1 3</td>
<td>1</td>
<td>0</td>
<td>0,5</td>
<td>5,5</td>
<td>25,77</td>
<td>8,75</td>
<td>Retak</td>
</tr>
<tr>
<td>4</td>
<td>K1 4</td>
<td>1,1</td>
<td>0</td>
<td>0,45</td>
<td>8</td>
<td>31,83</td>
<td>5,13</td>
<td>Retak pecah</td>
</tr>
</tbody>
</table>

Tabel 3. Hasil uji keramik, perbandingan campuran (1:3), suhu pembakaran 900°

<table>
<thead>
<tr>
<th>No</th>
<th>Contoh</th>
<th>Komposisi campuran</th>
<th>Pemosisitan (%)</th>
<th>Susut (%)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kaolin (Kg)</td>
<td>Tanah liat (Kg)</td>
<td>Air (L)</td>
<td>Soda silikat (g)</td>
</tr>
<tr>
<td>1</td>
<td>K1 1</td>
<td>0,5</td>
<td>1,5</td>
<td>0,65</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>K1 2</td>
<td>0,5</td>
<td>1,5</td>
<td>0,40</td>
<td>4,0</td>
</tr>
<tr>
<td>3</td>
<td>K1 3</td>
<td>0,9</td>
<td>1,5</td>
<td>0,55</td>
<td>4,5</td>
</tr>
<tr>
<td>4</td>
<td>K1 4</td>
<td>0,5</td>
<td>1,5</td>
<td>0,70</td>
<td>6</td>
</tr>
<tr>
<td>No</td>
<td>Contoh</td>
<td>Komposisi campuran</td>
<td>Porositas (%)</td>
<td>Santri (%)</td>
<td>Keterangan</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kaolin (Kg)</td>
<td>Tanah (Kg)</td>
<td>Air (L)</td>
<td>Sodium silikat (cc)</td>
</tr>
<tr>
<td>1.</td>
<td>KI 1</td>
<td>0.5</td>
<td>1.5</td>
<td>0.65</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>KI 2</td>
<td>0.5</td>
<td>1.5</td>
<td>0.40</td>
<td>4.0</td>
</tr>
<tr>
<td>3.</td>
<td>KI 3</td>
<td>0.5</td>
<td>1.5</td>
<td>0.55</td>
<td>4.5</td>
</tr>
<tr>
<td>4.</td>
<td>KI 4</td>
<td>0.5</td>
<td>1.5</td>
<td>0.60</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>KI 1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>KI 2</td>
<td>1.5</td>
<td>1.5</td>
<td>0.45</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Gambar 2. Hasil uji keramik, campuran (1:6), tampak benda uji retak dan pecah (warna putih sebelum dibakar, warna coklat setelah dibakar).
Gambar 3. Hasil uji keramik campuran (1:1), tampak benda uji masih retak-retak, suhu perebakan 1200° C.

Gambar 4. Hasil uji keramik campuran kisar das tanah liat (1:3), tampak pada benda uji tidak ada retak, suhu perebakan 1200° C.
KESIMPULAN

Berdasarkan hasil dan pembahasan tersebut di atas, dapat ditarik kesimpulan berikut.

1. Hasil pengamatan lapangan, yang didasarkan pada penyelarasan dan keterkaitan kaolin, serta hasil analisis laboratorium, (terutama didasarkan hasil analisis XRD), yang tidak menunjukkan adanya indikasi mineral kunci tipe alterasi hidrotermal, maka kaolin di daerah penelitian merupakan genesa terbentuknya kaolin akibat proses pelapisan dari batuan granit (sebagai besi atau indik), untuk kaolin residual. Pada daerah atapung sungai dan rawa terbentuk kaolin hasil proses sedimentasi (kaolin sedimen).

2. Hasil uji keramik menunjukkan kaolin di daerah penelaisan dapat dimanfaatkan sebagai bahan baku keramik dengan perbandingan campuran 1 bagian kaolin dan 3 bagian tanah liat. Proses pencampuran, pembuatkan bentuk, dan pemanasan harus mengikuti aturan baku dalam pembuatan keramik agar hasilnya baik.

UCAPAN TERIMAKASIH

Penulis menyampaikan rasa terima kasih yang sebesar-besarnya kepada:

Proyek BPJS (TMFD) DIKTI yang telah memberikan bantuan beasiswa selama pendidikan.

DAFTAR PUSTAKA

