PENGARUH PEMBERIAN SPOROZOIT INAKTIF TERHADAP TANTANGAN INFEKSI Eimeria tenella PADA AYAM

THE EFFECTS OF INACTIVE SPOROZOITS TO CHALLENGE THE INFECTION OF Eimeria tenella IN CHICKEN

Sarinah1, Santarto2

1Mahasiswa Fakultas Kedokteran Hewan Universitas Gadjah Mada
2Bagian Parasitologi Fakultas Kedokteran Hewan Universitas Gadjah Mada, Sekip Unit II Yogyakarta 55281
Tel./Fax. (0274) 508063

ABSTRAK

Kata Kunci: Eimeria tenella, sporozoit, sporozoit inaktif, infeksi tantangan

ABSTRACT

The effect of inactive sporozoites against the infection challenge of Eimeria tenella on chicken has been studied. Sixty day old chicken (DOC) of male layers were randomly allocated into 3 groups (I, II and III), on the 4 days of age, the chicks of group I were infected orally with 700 sporozoites of group II was infected orally with 700 inactivated sporozoites and group III was uninfected, as a control. On the 22nd days of age, all chicks were challenged with 1500 oocysts orally. On day 26 to 36th after challenging, the clinical signs of chicks were observed and the number of oocysta were collected. The clinical signs data were analyzed descriptively and the number of oocysta were analyzed according to the spil-plot and orthogonal contrast methods. It can be concluded that the treatment of chicks with inactivated sporozoites did not show clinical signs such as weakness and loss appetite. The analysis of the did not cause any significant clinical effect number of oocysta showed that these treatment could significantly decrease (P<0,05) the production of oocysta and inhibited the peak production of Eimeria tenella oocysta.

Key Words: Eimeria tenella, sporozoite, inactive sporozoite, challenge infection
PENDAHULUAN

Vaksin koksidiosis yang dipakai dalam ini adalah Coccovac-D (Elidyll, USA) merupakan vaksin yang dibuat dengan menggunakan stadian cocidiosis. Oleh karena itu pemanfaatan vaksin ini justru membebani permusalahan baru seperti tercemannya vaksin ke dalam makanan pada saat dilakukan vaksinasi, sehingga menjadi masalah serius.

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan sporozoit inaktif terhadap pertumbuhan coccidiosis Eimeria tenella pada ayam.

MATERI DAN METODE

Bahan penelitian meliputi ayam jantan ras petelor yang dipelihara mulai umur 1 hari (DOC) sampai umur 33 hari sebanyak 60 ekor, larutan kalsium bikarbonat 2,5%, larutan gula 40%, larutan cloro 500-800 µl 100%, tripan, larutan soda taurat, asidase, NaOH, HCI, NaCl fisiotogis dan larutan phospha buffer saline (PBS).

Peloperan yang dipakai adalah saringan ukuran 100-200 dan 300 mesh, vektors, smertis, labu wenzemeyer, inkubator CO2, waterkub, kandang ayam, amplitudo, siror, soksator (Labsomco. U-B-Braun 1000 L. Germany), reketor, tanah reaksi dan mikrotop.

Metode penelitian ini dapat dikemukakan menjadi 3 tahap, yaitu tahap persiapan yang meliputi produksiosisa, produksi sporozoit, pemecahan sporozoit, penyimpanan sporozoit, penyimpanan DOC dan kandang serta pakan. Tahap pelaksanaan meliputi...
penghampakan ayam, infeksi dengan sporozoit yang ditemukan, uji tantangan dan pengumpulan data. Tahap penelitian meliputi analisis data.

Produksi Osissta Elmeria tenella

Ayam pedaging betina umur 2 minggu sebanyak 40 ekor masing-masing dimasuki dengan 3000 oosissta secara oral. Para hari ke-7 sampai 11 paska infeksi, feses dikumpulkan, kemudian disaring menggunakan saringan ukuran 100, 200 dan 300 mesh. Osissta dari debris hasil dari penyaringan diberi kalium brokmat 2,5% (1 : 20), diakubaskas pada suhu kamar selama 72 jam agar dapat berporosiasi sempurna. Selanjutnya oosissta dihentikan dari debris feses dengan metode penggumpalan dengan larutan gula 40% (perbirangan 1:1). Proses penggumpalan dilakukan dengan mesocamp di dalam cawan petri berdiameter 90 mm dan ditempatkan dengan pemukaan larutan gula yang mengandung oosissta. Setelah diaduk selama 30 detik, dengan hati-hati cawan petri B diletakkan sedemikian rupa sehingga bagian dorsal cawan petri B tersebut bersonkatan dengan pemukaan larutan gula yang mengandung oosissta. Setelah dihariankan selama satu jam, cawan petri B diangkat, kemudian oosissta dan cairan yang melekat pada bagian dorsil cawan petri B disedot dengan alat dan ditampung ke dalam gelas beker, proses ini dilanjutkan sebanyak 2 kali. Gelas beker yang berisi larutan oosissta dicuci 3 kali dengan cara zetrifug dengan mokus untuk menghilangkan larutan gula. Selanjutnya oosissta tersebut disimpankan lagi ke dalam kalium brokmat 2%. Selanjutnya oosissta yang tersedia disimpan di dalam lemari es.

Produksi Sporozoit Elmeria tenella

Oosissta bersih yang telah berporosialisasi ditambah *Toxor* 500-800 µl 100% untuk melunakkan dinding oosissta, kemudian divorteks sebanyak 0,5 mm antar terkampur homogen. Setelah diakubaskas, selama 30 menit, oosissta bersama *Toxor* disentrifus 3 kali dan cairan dibuang untuk mendapatkan pete. Petai selanjutnya diisempitkan ke dalam NaCl fisiologis, kemudian divorteks dengan glass beads dengan kecepatan 1200 rpm selama 23 menit biara diperoleh sporozoita yang, dikehendaki. Larutan NaCl fisiologis yang berisi sporozoita dan glass beads disaring untuk memisahkan glass beads dengan sporozoita sehingga tersedia sporozoita yang murni, kemudian ditampung di dalam eiremenyer.

Produksi Sporozoit Elmeria tenella

Mula-mula disiapkan larutan ekstrasia yang terdiri dari trypsin 0,25%, sodium inosol 0,75% dan aquades 100 ml, pH dibuat 8,00 dengan NaOH atau HCl dan dipanaskan hingga 41°C. Sporozoita dalam NaCl fisiologis kemudian disentrifus 1 kali. Cairan dibuang dan diantraklaran larutan ekstrasia 5 ml dan divorteks selama 0,5 menit. Selanjutnya sporozoita dalam larutan ekstrasia dipindahkan ke tabung eiremenyer 50 ml dan dimasukkan ke dalam' inkubator CO2 dengan suhu 41°C selama 20 menit dengan tutup karet tertutup. Sebelum labu eiremenyer dikeluarkan, ditutup lagi dengan karet penutup. Larutan diakubaskas selama 90 menit dalam water-bath dengan rak bergoyang atau labu eiremenyer bergoyang setiap 5 menit pada suhu 41°C. Setelah itu dicuci 3 kali dengan NaCl fisiologis dengan setirifugasi. Cairan diatasnya dibuang dan diganti dengan phosphat saline glucose (PSG) sebanyak 10 ml dan akanknya sporozoita dalam larutan penyimpanan; sudah siap disimpan.

Inaktivasi Sporozoit

Sporozoita dalam PSG dicuci 2-3 kali dengan NaCl fisiologis kemudian diisempitkan. Suspensi tersebut disimpanan dengan amplitudo 14 m selama 30 detik sebanyak 5 kali dalam ice-bath.

Tahap Peralkas

Pada tahap ini digunakan 60 ekor ayam jantan ras petelur sebagai hewan percobaan. Selama peralakan pakai dan minum diberikan secara ad libitum. Dari ke-60 ekor ayam tersebut dikeluarkan 3 kelompok secara rataan. Setiap kelompok terdiri dari 20 ekor ayam. Pada umur 4 hari, kelompok I (K I) dilakukan dengan 700 sporozoit secara peroral, kelompok II (K II) diberikan 700 sporozoit yang diletakkan dengan disoketan secara peroral. Selangkah kelopak ketiga adalah kelompok ayam yang tidak divaksin sebagai kontrol (K C). Pada umur 22 hari, semua kelompok ayam diisempit tantang dengan car memberikan 1500 oisissta Elmeria tenella yang berporosialisasi, secara ordi. Setelah itu mulai hari ke-3 sampai hari ke-11 paska infeksi tantang, dilakukan pemeriksaan gejala klinis. Melalui hari ke-
4 sampai hari ke-11 ditularkan pemeriksaan tinja untuk memeriksa adanya oositा dengan metode McMaster yang dimodifikasi (Georgi, 1980). Pada hari ke-5 setelah infeksi, 50% (10 ekor dari 20) kelompok perlakuan dibunuh, untuk memantau derajat lari sekum, dikerrakan memutus metode Johnson et al. situs Reid et al. (1984).

Tabel 1. Rata-rata jumlah eliminasi oositа per gram tinja mulai hari ke-4 sampai dengan hari ke-11 setelah infeksi tantang dengan 1500 oositа Eimeria tenella.

<table>
<thead>
<tr>
<th>Kelompok Perlakuan</th>
<th>Jumlah eliminasi oositа (egg) pada periode (hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Kontrol</td>
<td>7688sE640</td>
</tr>
<tr>
<td>Perkakan 1</td>
<td>97,24</td>
</tr>
<tr>
<td>Perkakan 2</td>
<td>6200sE203,0</td>
</tr>
<tr>
<td></td>
<td>326</td>
</tr>
<tr>
<td>Perkakan 3</td>
<td>6355sE5426</td>
</tr>
<tr>
<td></td>
<td>297</td>
</tr>
</tbody>
</table>

Analisis Data

Data yang diperoleh dari pengamatan gejala klinis dianalisis secara deskriptif. Data jumlah oositа per gram tinja dianalisis dengan metode split-plot (Gill, 1978). Jika analisis signifikan, dilanjutkan dengan uji orthogonal kontras.

HASIL DAN PEMBAHASAN

Gejala klinis yang teramat pada kelompok kontrol adalah adanya penurunan nafsu makan, lesu dan lemah, sedangkan kelompok perlakuan lainnya tidak terdapat adanya gejala klinis yang jelas dan spesifik. Absennya gejala klinis pada kelompok perlakuan karena telah timbulnya kekebalan pada tubuh ayam tersebut setelah diberikan vaksin pada umur 4 hari, sedangkan pada kelompok kontrol tidak diberikan vaksin, sehingga belum ada kekebalan untuk melawan infeksi tantang yang diberikan. Gejala klinis yang teramat dari kelompok kontrol tidak ada gejala diare dan bercampur darah. Menurut Groves (1986), gejala klinis dari infeksi Eimeria tenella disamping ada gejala depresi, lemah, keldihatan mengantuk, ada alani atau pun perolehan. Perkembangan ventilirius dan enzimatis yang tidak sempurna karena status nutrisi yang kurang baik, sehingga gerakan pemecahan oositа di ventilrurus kurang sempurna. Adanya kemungkinan bahwa 1500 oositа yang diinfeksi tercemar dengan jenis

Gambar 1. Grafik jumlah eliminasi oositа per gram tinja mulai hari ke-4 sampai hari ke-11 setelah infeksi tantang dengan 1500 oositа Eimeria tenella.
Gambar 2. Grafik perbandingan jumlah oositia per gram tenja antara kontrol dengan kelompok perlakuan mulai hari ke-4 sampai hari ke-11 setelah infeksi tantang dengan 1500 oositia *Eimeria tenella*.

Dari pengamatan gejala klinis dapat diketahui bahwa infeksi penularan atau vaksinasi dengan sporozoit inaktiv dapat melindungi ayam terhadap infeksi bersik涌入.

Hasil perhitungan oositia yang didiminasikan ayam dihitung mulai hari ke-4 setelah infeksi tantang karena pada hari ke-4 tersebut telah ditemukan oositia dalam feses. Hal ini perlu disesuaikan dengan pendapat Reid et al. (1984).

Tabel 2. Analisis varian metode Split-plot terhadap jumlah eliminasi oositia per gram tenja pada ayam penselitan yang dipelihara mulai hari ke-4 sampai hari ke-11 setelah infeksi tantang dengan oositia *Eimeria tenella*.

<table>
<thead>
<tr>
<th>Sumber variabel</th>
<th>DF</th>
<th>Sum of Square</th>
<th>Mean Square</th>
<th>F Hitung</th>
<th>Pr>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perjaluan (A)</td>
<td>2</td>
<td>3.779E+11</td>
<td>1.873E+11</td>
<td>38.20</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Subyek (B)</td>
<td>27</td>
<td>1.324E+11</td>
<td>4.909E+09</td>
<td>1.12</td>
<td>0.3230</td>
</tr>
<tr>
<td>Periode (E)</td>
<td>9</td>
<td>2.181E+11</td>
<td>2.963E+10</td>
<td>3.85</td>
<td>0.001*</td>
</tr>
<tr>
<td>Interaksi subyek (A) x (B)</td>
<td>18</td>
<td>2.605E+11</td>
<td>1.977E+10</td>
<td>4.39</td>
<td>0.001*</td>
</tr>
<tr>
<td>B (Error b)</td>
<td>153</td>
<td>6.829E+11</td>
<td>4.486E+09</td>
<td>6.387</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Adanya penurunan jumlah oositia dari kelompok perlakuan merupakan bulatan adanya respon kekebalan akit perubahan pembesar perlakuan baik dengan menggunakan sporozoit atau sporozoit yang dilemahkan. Bahwa
pemberian sporozoit dapat meningkatkan kekebalan ayam pada perlakuan, adalah sesuai dengan pendapat Jenkins et al., (1995) yang menyatakan bahwa imunisasi ulang dengan sporozoit yang disisik dapat menginduksi imunitas parcial pada ayam muda.

Tabel 3. Perbandingan rata-rata jumlah oosista kontrol dengan perlakuan I dan II, dengan uji orthogonal kontras

<table>
<thead>
<tr>
<th>Rata-rata jumlah oosista kontrol vs perlakuan I dar II</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5336.86 ±1269117.70 vs. 17105.30 ±24635.30</td>
<td>166.4681568</td>
<td>3.87**</td>
</tr>
</tbody>
</table>

*signifikant

Tabel 4. Perbandingan rata-rata jumlah oosista antara perlakuan I dan perlakuan II dan hasil uji orthogonal kontras

<table>
<thead>
<tr>
<th>Rata-rata jumlah oosista perlakuan I vs perlakuan II</th>
<th>F Hting</th>
<th>F Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>14873.12 ±123817.50 vs 30648</td>
<td>30.648</td>
<td>3.87**</td>
</tr>
</tbody>
</table>

*signifikant

Gambar 3. Grafik perbandingan jumlah oosista per gram tinja pada perlakuan I dan perlakuan II mulai hari ke-4 sampai ke-11 setelah infeksi terhadap 1500 oosista Eimeria tenella.

Perbandingan antara perlakuan I dan perlakuan II dengan orthogonal kontras menunjukkan bahwa ada perbedaan jumlah oosista yang signifikan pada kedua perlakuan. Perlakuan yang signifikan dari jumlah oosista dari perlakuan I dan perlakuan II dapat dilihat pada Tabel 4.

Dari tabel 5 dapat dilihat bahwa rata-rata jumlah oosista pada perlakuan I lebih rendah dari pada perlakuan II. Besarnya penurunan rata-rata jumlah eliminasi dari perlakuan I dibandingkan perlakuan II adalah sebesar 64,12%. Perbandingan jumlah eliminasi oosista antara perlakuan I dan II untuk waktuh bahwa jumlah eliminasi oosista pada perlakuan I lebih rendah dari pada perlakuan II, dapat dilihat pada Gambar 3.

Dengan berperedaman pada jumlah oosista pada perlakuan II, dari Gambar 3 dapat dilihat bahwa perbandingan I, jumlah oosista 90,24% lebih rendah dari perlakuan I pada hari ke-4 dan 33,67 % pada hari ke-5. Khusus pada hari ke-6, jumlah oosista pada perlakuan I, pemberian lebih tinggi dari pada perlakuan II yaitu sebesar 13770 atau 47.24%. Pada hari ke-7 hingga hari ke-11 jumlah oosista perlakuan I semuanya lebih rendah dibandingkan jumlah oosista dari perlakuan II.

Pada waktuh dilihat dari jumlah rata-rata eliminasi oosista perlakuan II lebih besar daripada pada perlakuan I, tetapi

65
peuk produksi oosista dari perlakuan II sebati lebih lambat dari pada perlakuan I.
Adanya penurunan jumlah oosista dan hambatan pencapaian peuk produksi oosista Eimeria tenella adalah bukti adanya biotik potensial dari parasit koksidia yang semakin lemah.
Berdasarkan hasil dan pembahasan dapat disimpulkan bahwa sporozoit mampu menurunkan produksi oosista Eimeria tenella, sedangkan pemberian sporozoit yang dinekaskan, selain dapat menurunkan produksi oosista, juga mampu menghambat peuk produksi oosista Eimeria tenella.
Perlu dilakukan penelitian lebih lanjut mengenai sporozoit dan sporozoit yang dinekaskan sehingga didapatkan hasil yang memuaskan terhadap usaha-usaha yang berkaitan dengan pencegahan koksidiosis di masa mendatang.

DAFTAR PUSTAKA

